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Abstract—We consider the problem of channel estimation in
millimeter wave massive multiple-input multiple-output systems
with a hybrid architecture. The existing strategies for channel
estimation hinge on the use of a grid of finite resolution from
which the angles of departure are taken. Unlike those strategies,
we investigate a grid-less channel estimation approach does not
assume that the angles come from a finite resolution grid, but
rather are continuous variables. This underlying optimization
problem can be reformulated as an exact semi-definite program
for which efficient solvers are readily available. Numerical
comparisons suggest that the performance of the off-grid scheme
is better than that of the grid-base counterparts when the number
of grid points is of the same order as the number of antennas.
In this regime grid-based solutions suffer from the error floor
associated with restricting the angle of departure to a discrete
grid of finite resolution, while the off-grid scheme does not. In
addition, computational complexity analysis reveal that these
performance gains are realized only at the cost of a modest
increase in complexity relative to the most widely-known grid-
based algorithms.

I. INTRODUCTION

OWING to its outstanding beamforming capabilities, Mas-
sive multiple-input multiple-output (MIMO) has es-

tablished itself as one of the key enablers of millimeter
wave (mmWave) systems in future cellular networks [1], [2].
While the adoption of massive MIMO technology allows
for increased link performance, the practical deployment of
the traditional fully-digital architecture is hindered by high
energy consumption and stringent hardware requirements of
radio-frequency (RF) components. In order to overcome such
drawbacks, a novel framework, known as a hybrid architecture,
is proposed in [3], [4] to replace the fully-digital system by
an analog beamformer, implemented in the RF domain using
low-cost analog phase shifters, and a low-dimensional digital
beamformer.

In this work, we consider the problem of channel estimation
in millimeter wave (mmWave) systems with hybrid beam-
forming using a small number of measurements. Due to the
severe path loss associated with the mmWave environment,
the channel matrix can effectively be represented as the sum
of a small number of dominant channel paths, and hence
possesses a sparse representation in the angular domain [5].
The conventional compressive sensing (CS)-based techniques
for channel estimation in mmWave systems exploit this fact

to perform on-grid recovery. In particular, these techniques
make the key assumption that the angles of departure (AOD)
are restricted to a discrete grid of finite resolution [6]–[8].
The theory of compressive sensing provides guarantees that
these methods work well when the true AOD lies exactly on
the grid. However, the lack of theoretical guarantees when the
AOD falls outside the grid leads to a lack of clarity as to
whether this is the best way of estimating the channel.

Distinct from the grid-based methods, in this work we
utilize a gridless sparse-recovery algorithm to estimate the
channel state information (CSI). In particular, this work is
motivated by the theoretical findings in [9] for the off-grid
sparse reconstruction of the sum of complex sinusoids of
different frequencies. Such frequencies are not assumed to
belong to a finite-resolution dictionary, but take on arbitrary
values in the interval [0, 1]. Moreover, the exact recovery
of such frequencies entails solving a semi-definte program
corresponding to minimizing the so-called atomic norm.

We make use of this formulation to perform channel esti-
mation without the additional requirement that the angles lie
on a grid. To do this, we reformulate the channel estimation
problem as an atomic norm minimization (ANM) problem.
Because the ANM can be equivalently cast as a semi-definite
program (SDP), the solution to the channel estimation problem
is obtained using CVX [10]. Numerical comparisons reveal
performance gains for off-grid channel estimation algorithm
relative to the grid-based counterparts in the regime of grid
spacing considered. This is intuitive since the ANM does
not suffer from the error associated with grid restriction in
the grid-based methods. Computational complexity analysis
indicates that the cost of solving the original SDP formulation
associated with the ANM is as high as O((N+1)6) operations
per iteration, which may suggest that the ANM comes with a
heavy complexity toll. However, it was suggested in [11] that
the atomic norm minimization can be efficiently solved using
the Alternating Direction Method of Multipliers (ADMM) [12]
in only O((N + 1)3) operations per iteration, thus entailing
only a modest increase in computational cost compared to
that of the most widely-known variation of the grid-based
algorithms, known as the Orthogonal Matching Pursuit (OMP)
[13].
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Fig. 1. Block Diagram of the system architecture. The BS is equipped with
analog phase shifters with switches that map the observations of the antennas
into the RF chains.

II. SYSTEM AND CHANNEL MODEL

A. System Model

We consider a TDD massive MIMO system operating in
a frequency flat mmWave environment shown in Fig. 1.
The base-station (BS) is equipped with M antennas and
communicates with K single antenna users. Specifically, we
focus on the problem of channel estimation between the BS
and the users. Channel estimation is of importance to the
design of such system since it serves as an intermediate step
for the design of other components (e.g., precoding matrix
design [6]). To perform estimation, the channel is sensed by
the BS through uplink pilot training. Since TDD operation
is assumed, the uplink and downlink channels are identical
[14]. As a result, the BS can acquire the CSI once it has
observed the uplink pilot transmissions. Moreover, in a multi-
user scenario this channel sensing process is performed in
a TDMA fashion, where each user is assigned a block of
L interference-free transmission slots during which a pilot
sequence is communicated to the BS. Let x(`)k denote the `-th
pilot transmission by user k, where ` = 1, . . . , L, the received
baseband vector at the BS is given by:

z
(`)
k = W(`)(hkx

(l)
k + n

(l)
k ), (1)

where W(`) is the combining matrix for time slot ` at
the BS and n

(`)
k ∈∼ CN (0, σ2IM ) is the corresponding

circularly-symmetric, additive white Gaussian noise vector. We
assume M is large and the BS employs a hybrid architecture
with switches adopted in [15]. In particular, to reduce the
implementation complexity of the system, the BS antennas are
internally connected to NRF RF chains, with K ≤ NRF ≤M ,
where the connections are implemented in the analog domain
using phase shifters and can be enabled or disabled using
switches. This entails a slight modification to the traditional
hybrid architecture in [3] which only consists of analog phase
shifters. However, as argued in [15] the cost of adding the
switches to internal connections is marginal. This concept

is illustrated in Fig. 1. With this assumption, the combining
matrix in the `-th time slot is:

W(`) = A(`) �W
(`)
RF , (2)

where � is the Hadamard (i.e., element-wise) product, W
(`)
RF ∈

CNRF×M is the analog precoding matrix whose entries are
constrained to unity, i.e., | [WRF]ij | = 1, and the matrix
A(`) ∈ {0, 1}NRF×M is binary valued with entries correspond
to the state of the switches. Finally, by vertically stacking all
BS observations for user k, the overall received pilot vector
is given by:

zk =
√
P


A(1) �W

(1)
RF

...
A(L) �W

(L)
RF


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Φ
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(1)
k
...

ñ
(L)
k

 , (3)

where we set x(`)k =
√
P ,∀` for simplicity, and take ñ

(`)
k ,

W(`)n
(`)
k to be the corresponding noise vector for user k,

and P as the transmitted power. Finally, we also denote the
channel sensing matrix by Φ ∈ CLNRF×M . The design of
such matrix follows from the design of the analog phase
shifter matrices W

(`)
RF , and the design of the switching matrices

A(`). Following [15], [16], we assume that the BS has Q-bits
quantized phase shifters and thus the coefficients of analog
matrices are of the form ej2πi/2

Q

, where i ∈ {0, . . . , 2Q − 1}
and j =

√
−1. In addition, for reasons that will become clear

later on, we choose A(`),∀` in such a manner that only NRF
of M antennas are active. Thus, over the course of L pilot
transmissions of user k, the BS is able to observe the noisy
channels of distinct LNRF antenna elements. If we define

A ,
[(

A(1)
)T
. . .
(
A(L)

)T ]T , this requirement is equivalent
to setting one entry in the each row of the matrix A to one
and the rest of the entries to zero, where no two rows are
identical.

By horizontally stacking the observations from all users, we
finally obtain

Z = ΦH+ N, (4)

where Z , [z1 . . . zK ]CLNRF×K is the observation matrix
containing the overall received pilot vectors during the entire
training phase for all users, H , [h1 . . .hK ] ∈ CM×K is the
channel matrix for all users, and N , [ñ1 . . . ñK ] ∈ CMRF×K

is the corresponding noise matrix after combining.

B. Channel Model

The expression in (4) describes the relationship between
the known observation (i.e., Z) and the unknown parameter
(i.e., H) in the channel estimation problem. In the tradi-
tional multi-path rich-scattering environment, the entries of
the channel matrix H are uncorrelated and thus conventional
estimation techniques such as the MMSE must be employed
to obtain a channel estimate. In this case, the number of pilot
transmissions needed for effective channel recovery is at least
dM/NRFe. The propagation environment we consider here is



that of a mmWave channel [1]. In this model the user channels
can be written as

hk =

Lp∑
i=0

αia (φi) , αi ∼ CN (0, 1) φi ∼ Unif([0, 2π]),

(5)
where Lp is the number of paths, αi and φi are the path gains
and AOD for path i, and Unif([a, b]) is the uniform distribution
with parameters a and b. Finally, a(φ) is the antenna array
response. For a uniform planner array, this is given by:

a (φ) =
[
1, ej

2πd
λ sin (φ), . . . , ej

2πd
λ sin (φ)(M−1)

]T
, (6)

where λ is the operating wavelength and d is the antenna
elements separation. Due to the sparsity associated with such
a model, one can employ compressive sensing schemes to
perform channel recovery using a modest number of pilot
transmissions.

III. GRID BASED CHANNEL ESTIMATION

Compressive sensing is a tool for finding sparse solutions
to undetermined linear systems. From (5) each user channel
is formed from a linear combination of relatively few “atoms”
a(φ), and can thus can be represented as a sparse vector
in some dictionary. A traditional approach to exploiting this
sparsity is to quantize the continuous parameters φi. This is
done by forming a grid with Gb points ϕ1, . . . , ϕGb . If there
exists points on the grid φ

′

i ≈ φi, then from (5) we can write:

hk ≈
Lp∑
i=0

αia
(
φ

′

i

)
, φ

′

i ∈ {ϕ1, . . . , ϕGb} . (7)

It is clear that the accuracy of the approximation in (7) depends
on how close each φ

′

i on the grid is to the continuous parameter
φi. In this grid based approach we introduce a dictionary
matrix:

Ψ = [a(ϕ1), . . . ,a(ϕGb)] . (8)

Using this dictionary matrix each user channel can be repre-
sented as a transformation of a sparse vector:

hk ≈ ΨhSk ,
∥∥hSk∥∥0 = Lp. (9)

This sparse representation enables us to write the problem of
channel estimation as a compressive sensing problem:

arg min

hSk

∥∥hSk∥∥0
subject to

∥∥ΦΨhSk − zk
∥∥
2
≤ η,

(10)

where η should be chosen as a function of noise power. This
problem is not convex, but under certain circumstances it is
approximable [17]. Let ΦΨ = B = [b1 . . .bGb ]. The solution
to (10) can be approximated if the “mutual coherence” µ of
B satisfies:

µ(B) = max
i 6=j

∣∣bH
i bj

∣∣
‖bi‖2 · ‖bj‖2

<
1

2Lp − 1
(11)

Note that (11) is related to the so-called RIP condition,
which has similar implications. Our choice of A in (2) and the
introduction of switches, is important for reducing the mutual
coherence of B. In the following sections, we consider two
different techniques which can be used to approximate the
solution to this optimization problem.

A. Orthogonal Matching Pursuit

OMP [13] is a greedy approach for approximating the
solution of the combinatorial problem (10). We consider
two variants of this algorithm. In the first variant given in
Algorithm 1, the solver is not aware of the number of paths, Lp
which comprise the channel. Instead, a threshold is provided
to the algorithm, and the termination condition is based on
a comparison between the residual error and the threshold.
The threshold is chosen empirically to minimize the mean
square error. Another variant of OMP is considered when Lp

Algorithm 1: Threshold Orthogonal Matching Pursuit
Input
Sensing matrix and dictionary Φ and Ψ, measurement

vector: zk, threshold: δ;
Initialize: t← 0, r← z, hS ← 0 ∈ CGb , It ← ∅ ;
while ‖r‖2 ≥ δ do

g∗ ← argmax
∥∥aHg ∥∥2;

t← t+ 1;
It = It−1 ∪ {g};
x∗ ← (ΦΨ)

†
It z;

r← z− (ΦΨ)It x∗;
hS ← x∗

end
Output: Channel Estimate ĥS

is known. This version differs from Algorithm 1, only in the
fact that the “while” condition is

∥∥hS∥∥
0
≤ Lp.

B. Basis Pursuit Denoising

While the OMP is considered a cheap algorithm for estimat-
ing the channel, a more elaborate approach, known as Basis
Pursuit Denoising (BPD) [18] is often used to approximate
the solution to the compressive sensing problem (10). The
formulation of Basis Pursuit Denoising is given by:

minimize
h̃k

1

2

∥∥∥ΦΨh̃k − z
∥∥∥2
2
+ ν

∥∥∥h̃k∥∥∥
1
. (12)

It is an instance of a convex quadratic program, and can be
solved efficiently by many standard methods, for example,
homotopy continuation [19]. The form of the objective in
(12) is a weighted sum of the square-residual error of the
reconstructed channel and the l1-norm of the estimated channel
in the angular domain, where it is known to be sparse. Here the
l1-norm serves as a convex proxy for the “l0-norm” in (10)
(which is not actually a norm). The scaling hyperparameter
ν controls the relative importance of sparsity and residual
error in the optimal solution ĥS . As ν becomes large, (12)



favors sparser solutions, while as ν becomes smaller, solutions
which more faithfully reconstruct the observed measurement
are favoured. Practically, ν can be chosen to minimize the
normalized mean square error of the channel estimation via
sweeping the parameter over a range of values.

IV. OFF-GRID CHANNEL ESTIMATION

The common element in all of the channel estimation
techniques which were previously described is the introduction
of a finite dictionary matrix Ψ. Off-Grid Compressive Sensing
techniques use a more advanced mathematical framework to
avoid the use of a finite dictionary—instead using an infinite
one. We start by defining such an infinite dictionary:

A =
{

a(φ)α : φ ∈
(
−π
2
,
π

2

]
, α ∈ C, |α| = 1

}
. (13)

If we consider (5) in the context of the dictionary A, we
can write hk as:

hk =

Lp∑
i=1

vi vi ∈ A. (14)

We now seek a convex function which can be used to indicate
sparsity over this dictionary, similar to the l1-norm which was
used in the basis pursuit denoising formalism. This problem
has been considered previously in [9]. In that work, the
“atomic” norm formalizes this idea. This norm is given by:

‖hk‖A = inf{g > 0 : hk ∈ g · conv(A)}

= inf

{∑
i

bi : hk = bi
∑
i

ai, bi > 0,ai ∈ A

}
.

(15)
The atomic norm ‖·‖A, is not as simple as the l1-norm,

however, it has been shown in [9] that this norm can be
calculated by the following SDP:

minimize
t,u

1

2
(t+ u1)

subject to

[
T (u) hk
hH
k t

]
� 0.

(16)

Thus, despite the relatively complicated formulation of the
atomic norm, computationally, it remains tractable. In addition,
the authors of [9] further show that if hk is observed exactly
on a subset of sufficient length N = O(logLp logM), then
the ANM guarantees exact reconstruction of the entire vector
in the noiseless case. Thus, we can see that our choice of A
in (2) serves a second purpose of allowing us to observe the
channel in LNRF positions, up to a unit modulus scaling.

Atomic norm denoising [20] is a simple augmentation of the
basis pursuit denoising described in Section III-B to handle the
noisy case. The overall form is similar to that of (12), but with
the l1-norm replaced with the atomic norm:

minimize
hk

1

2
‖Φhk − z‖22 + ν ‖hk‖A . (17)

Equation (17) is also an SDP. This can be seen by including
the definition of the atomic norm in (16) with the optimization

Fig. 2. Performance comparison of the ANM, BPD, and the two variants of
the OMP in terms of the Normalized Mean Square Error.

problem in (17). This leads to the following formulation for
the sparse channel estimation problem:

minimize
t,u,hk

1

2
‖Φhk − z‖22 +

ν

2
(t+ u1)

subject to

[
T (u) hk
hH
k t

]
� 0.

(18)

V. NUMERICAL ANALYSIS

In this section, we assess the performance of off-grid chan-
nel estimation against the grid-based approaches discussed in
Section IV. To do this, we consider a BS with M = 64
antennas and NRF = 16 RF chains. The BS serves K = 10
users. The sparse channel has Lp = 2 paths and we allocate
L = 2 pilot transmissions per user. Thus, we can observe only
LNRF = 32 noisy observations. The matrices WRF and A are
chosen according to the construction in Section II in a random
fashion. Finally, we take d/λ = 1/2.

A. Performance Comparison

In Fig. 2, we plot the Normalized Mean squared Error
(NMSE) E{(‖Ĥ−H‖2F)/ ‖H‖

2
F} against the Signal-to-Noise

Ratio SNR = 10 log P
σ2 for the ANM, BPD, and the two

variations of the OMP considered in Section IV, denoting
the variation with `2 termination condition by OMPT. For the
grid-based approaches, we choose the grid size Gb = 2M .
Focusing on medium and high SNR ranges, we see that the
ANM outperforms the other three approaches. This is expected
since it does not suffer from the error floor associated with the
grid restrction in the grid-based schemes. This error floor is
particularly visible in the case of OMP since it detects only
the highest two directions in the dictionary rather than than
relying on an `2 termination condition.

B. Performance and Complexity Trade-off

In this section we study the performance and complexity
trade-off of grid based channel estimation schemes. Fig.3,



Fig. 3. On-Grid Channel Estimation is compared to Off-Grid Channel
Estimation in NMSE, as a function of the grid size Gb. L = 2, K = 10,
M = 64, NRF = 16, Qb = 7, Nb = 50.

verifies the intuitive expectation that increasing the grid size
results in a decrease in the estimation error for the grid based
scheme. As the number of grid points increases, the estimation
error decreases at a decreasing rate. In the region where Gb
is small, Fig.3 shows that in a log-log plot the error decreases
linearly. In this region, the linear fit results in the power law:
NMSE ≈ 639Gb

−1.534. As Gb becomes larger, however,
the on-grid estimation error asymptotically approaches the
atomic norm estimation error. Fig.3 shows that the advantage

OMP ADMM Interior Point

LNrf (Gb + L2
p)

(
LNrf

)3 (
LNrf

)6
TABLE I

COMPLEXITY ANALYSIS OF CHANNEL ESTIMATION SCHEMES.

of using the atomic norm for the purpose of channel estimation
is limited, in the sense that nearly identical results can be
achieved with a fine grid. Thus, the choice of algorithm is
dominated primarily by the difference in computational costs,
as well as estimation error requirements. For example, from
Fig.3 if we wish to achieve results close to that of atomic norm
denoising, we might choose Gb ≥ 1500. If we solve (17) by
ADMM the complexity of the algorithm grows with (LNrf )

3,
while the number of computations in OMP is LNrf (Gb+L2

p).
Since the required Gb > (LNrf )

2, Atomic Norm Denoising
may be faster, although the complexity measures stated here
are approximate, and only accurate in order.

VI. CONCLUSION

In this work, we examined an off-grid channel estimation
strategy for massive MIMO systems in mmWave propagation
environments and compared it with the traditional strategy
where AODs are restricted to lie on a finite grid. We cast the
off-grid estimation problem into an exact convex optimization
problem for which computationally efficient algorithm exists.
Furthermore, we studied the computational complexity of both
the grid-based and off-grid algorithms. Our contribution is a

numerical example which shows that the increase in complex-
ity of off-grid schemes is modest when compared against the
complexity of OMP with the required number of grid points
to achieve similar performance to atomic norm denoising.
Finally, we remark that we have not included convergence
analysis due to space limitations.
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