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Abstract— Regular exercise is key to maintaining good health,
and keeping a log of one’s exercises is shown to improve
both progress and dedication to the gym. While most workout
logging technologies such as smart phone applications require
an extensive amount of input from the user, we propose a
scalable solution to track one’s exercises automatically.

Limiting the scope of this research to the classification of
free-weight and bodyweight exercises, we develop a three-step
system to classify exercises, repetitions, and weights in real-time
before uploading this information to a cloud database. Using a
recurrent neural network, we classify exercises based on skeletal
vectors from a Microsoft Kinect camera. The classified exercise
windows are then filtered through principle component analysis
and a spectrograph to detect peaks that define repetitions.
The three-dimensional skeletal data is then mapped to a two-
dimensional image that can be scanned for the most probable
colour-coded dumbbell weight.

On a validation set of 41 exercises, the exercise classification
achieves 97% accuracy, the repetition counting achieves 84%
accuracy, and the weight detection achieves 100% accuracy.
These results demonstrate the viability of machine vision
techniques to automate fitness tracking.

I. INTRODUCTION

Physical exercise is one of the most important contrib-
utors to maintaining good health. Despite this, 2 out of 3
Americans fail to meet the recommended minimum amount
of weekly exercise. Among reasons for this lack of exercise
is the high attrition rate faced by fitness facilities. According
to the International Health and Racquet Sports Association,
the difficulty in receiving immediate, structured feedback on
one’s workout is one of the principal drivers of gym attrition
[1].

One way to address the problem of limited feedback in the
gym is to create a workout log that allows users to easily
observe trends in their exercise history. However, current
products in the market are all either overly burdensome to the
user or severely limited in their scope of available exercises.

As an example of an overly burdensome technology,
BodySpace is a smart phone application that keeps track
of a user’s exercise history provided that the user manually
types each of their exercises into the application during their
workout. As a rough estimate, if the average user performs
25 sets in their workout and takes 1 minute to enter the
information into their phone, then 25 minutes, or half of the
duration of their workout, is spent entering information into
their phone.

As an example of a limiting technology, eGym is a
company specializing in sensor-enabled workout machines.
They can only track the user’s workout on several specific
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machines manufactured by eGym and are unable to track
any free-weight exercises, the largest class of exercises. With
eGym’s model, the fitness facility is restricted to a single
machine supplier, and the user is limited to a small set
of machine-based exercises when they wish to enjoy the
automatic logging of their workout.

Outside the market, there have been many recent efforts
in academic research to develop exercise classification and
repetition counting capabilities [2], [3]. Most approaches in
the literature focus on the analysis of accelerometer data [4],
[5], [6], [7], [8]. However, given that most gym users are
reluctant to wear accelerometers during their workout along
with recent advances in machine vision, we anticipate that
machine vision will become the technology that facilitates
broad exercise monitoring capabilities.

We propose a system that uses machine vision to auto-
mate the classification of exercises, repetitions, and weights,
uploading this workout data in real-time to the appropriate
user’s fitness profile. This system gathers structured feedback
without burden for the user by creating a record of the user’s
workout history without requiring any user input. Further,
the system has the potential to accommodate any exercise,
making it more versatile than current market alternatives.

Fig. 1. Block Diagram of the System

The system is illustrated in a block diagram in Figure 1. It
is composed of three subsystems: and Exercise Classification
Subsystem, a Repetition Counting Subsystem and a Weight
Detection Subsystem.

The remainder of this paper is structured as follows.
Technology used and simplifications to the problem for this
iteration of the system are described in the Setup section.



Each of the three subsystems are described in the Method
section. The performance of the system is quantified in the
Results section. Finally, we discuss our ongoing work on this
project in the Conclusion section.

II. SETUP

A. Technology used

In this project, we use the Microsoft Kinect V2 camera.
This camera generates RGB images, depth-based images
and three-dimensional skeletal vectors recognizing up to six
people at a time. The two sets of images and skeletal vectors
constitute inputs to the system.

B. Simplifications of the problem

Recall that the goals of an eventual version of the system
are to be able to classify any exercise performed with any
weights, anywhere in the gym with high accuracy and to
upload this data to the appropriate user’s profile. However,
this iteration of the system addresses only a subset of this
functionality, making several simplifications:

• The system is limited to classifying 11 free-weight and
body-weight exercises and their variants. Classified ex-
ercises include bicep curl (simultaneous and alternating
variants), squat, sitting shoulder press, lateral arm raise,
lunge (left and right variants), sit-up, dumbbell row (left
and right variants), and sitting tricep extension.

• The system is limited to classifying three sets of color-
coded weights.

• The system assumes that the user will take at least a 5
seconds break between their exercises.

• The system only uses one camera, and thus has a limited
field of vision.

• The system does not incorporate the identification of
users after they leave the frame.

• The system does not handle obstructions to the field of
vision.

We feel that despite these simplifications, the system
demonstrates the viability of the machine vision approach to
exercise classification. By addressing free-weight exercises,
the current bottleneck of the industry, we demonstrate the
capacity of the system to outperform existing solutions.

III. METHOD

The system consists of three subsystems. The Exercise
Classification Subsystem receives a time series of skeletal
vectors as input, determines which exercise is being per-
formed and when that exercise has been completed. The Rep-
etition Counting Subsystem receives data from a completed
exercise and determines the number of repetitions performed
during that exercise. The Weight Detection Subsystem re-
ceives data from a completed exercise and determines which
weight, if any, is being lifted by the user.

Fig. 2. Example of generated skeleton, and mapping onto color image

A. Exercise Classification

The Exercise Classification Subsystem consists of a pre-
processing step that enforces translational and rotational
invariance in the data, a predictor that takes a window of
data as input and outputs a set of probabilities for which
exercise is being performed, and a smoothing algorithm that
determines at which time the exercises begin and end.

1) Preprocessing: Because we want our system to remain
robust to users performing exercises while facing in different
directions and standing in different parts of the frame, it is
important to enforce translational and rotational invariance in
our data. To accomplish this, the preprocessing step receives
the raw skeletal vectors from the Kinect camera which
consist of 75 points for each frame representing 25 joints of
the human body in three-dimensional space. From this data,
we calculate the angle between joints at 21 locations on the
body and the normalized (mean of 1) distance between each
of the 25 joints and the centroid of the body for each frame.
By considering these 46 time series as opposed to the original
75 time series, our system becomes insensitive to translation
and rotation in the camera frame, and disregards the absolute
height difference between different users.

This processed data is then stored in a queue and delivered
to the predictor to prevent the dropping of frames.

2) Predictor: The predictor employs a recurrent neural
network (RNN) that accepts processed skeletal input vectors
and outputs the most likely exercise classification from a
given list. In addition to the 11 exercise variants, the RNN
can output a ’NULL’ exercise to indicate that the user is not
performing any recognized exercise at that time. An RNN
is the appropriate choice for this application due to the time
series nature of the input data. Once trained, it exhibits an
extremely quick computation time suitable for running the
system in real-time.

The predictor outputs one list of probabilities per second
representing the various exercises the user could be perform-
ing. This data is read by the smoothing algorithm to prevent
erroneous classifications.



3) Smoothing: Reading the classification probabilities
from the predictor, the smoothing algorithm applies a low
pass filter that ignores exercises done for only several sec-
onds. Then, by searching for transitions from the ’NULL’
classification to that of a valid exercise, the algorithm
ascertains a beginning and ending time for each exercise
window, determines the most probable exercise over the span
of each window, and labels each window with an appropriate
exercise label. This procedure would be problematic if a user
transitioned quickly from one exercise to another, as temporal
filters may prevent the ’NULL’ classification from being
asserted. However, compared to a system that did not enforce
a period of ’NULL’ classification between each exercise, this
method is observed to improve the overall accuracy of the
Exercise Classification Subsystem significantly.

B. Repetition Counting

Fig. 3. Block diagram of the subsystem responsible for Repetition Counting
and Variant determination

When given a labelled exercise, the Repetition Counting
Subsystem selects the skeletal data associated with that
exercise. This skeletal data consists of a three-dimensional
set of coordinates for each of the 25 joints recorded. First, the
non-vertical components of the data are discarded, reducing
the vectors to contain only the vertical component of each
joint. This simplification is appropriate because all of the
exercises in our sample set are limited to free-weight and
body-weight exercises that rely on the force of gravity
to provide resistance. Thus, by discarding the non-vertical
components of the vectors, the system reduces noise that
could influence the accuracy of classifications.

Next, we project the remaining 25-dimensional joint
data X(t) defined in the interval [tstart, tend] into a one-
dimensional signal space y(t). To accomplish this, we first
select the middle subset of the data by constraining tstart +
τ < t < tend − τ for a fixed constant τ . This ignores the

Fig. 4. Upper plot depicts the principle component of motion for the
captured skeleton. Lower plot is part of a spectrogram, showing the intensity
of the dominant frequency in the upper plot

most uncertain portion of the data at the beginning and end
of the exercise where large movements that are not part of
the exercise can occur.

Using prepackaged software, we decompose X(t) =
UΣV ∗ using Singular Value Decomposition and select the
first column of U corresponding to the eigenvector with the
most variance in the data, denoted w. Then, considering the
full range of t:

y(t) = wTX(t), t ∈ [tstart, tend]

The upper plot of Figure 4 depicts a signal y(t) gener-
ated from skeletal data of a user performing the bicep-curl
exercise. Due to the limitation of the Exercise Classification
Subsystem’s ability to determine precisely when an exercises
has ended, small windows of skeletal data from before and
after the exercises are included in the signal y(t).

Once the signal y(t) is successfully generated, the exact
window in which the exercises took place is determined.
First, the signal is filtered using a third order Butterworth low
pass filter. The orange data on upper plot of Figure 4 shows
the output of that filter. The exact window is then identified
by finding the dominant frequency ωD in the signal using a
Fourier Transform:

Y (ω) = DFT (y(t))

ωD = argmax (Y (ω))

A spectrogram is then taken on the signal y(t) using
a window length that corresponds to two periods of the
dominant frequency. The lower plot on Figure 4 shows
the output of the spectrogram corresponding to ωD. By
observing the first time at which the power of the dominant
frequency exceeds 50% of its maximum value and the last
time at which the power returns below 50%, we identify the
exact window when the exercise is being performed.

With this window identified, the number of repetitions can
be counted using a simple peak detector. This is implemented
by subtracting the mean from the signal and counting the
number of peaks above zero, thereby ignoring small oscilla-
tions around the troughs.



1) Determining the Exercise Variant: Principal Compo-
nent Analysis serves as a useful tool for determining which
variant of an exercise is being performed. The dumbbell row,
for instance, is often performed with either the left or the
right hand. Looking at the magnitude of each dimension in
the first principal component, we determine which joints con-
tribute most the the primary variational mode of the signal
y(t). If it is determined, for instance, that the components of
w corresponding to left arm-related joints have the greatest
magnitude, it can be inferred that the left hand variant of the
exercise is being performed.

C. Weight Detection

Fig. 5. Procedure for the image subtraction algorithm for weight detection

When given a labelled exercise, the Weight Detection
Subsystem selects the skeletal vectors and RGB images
associated with the time-window. In this project, the scope
of weight detection was limited to the classification of
dumbbells of three colours: blue, aqua, and purple, or the
absence of any dumbbells.

First, the system determines whether dumbbell colour clas-
sification is appropriate for the given exercise. For example,
it is appropriate for a user to be using dumbbells during
bicep-curls and shoulder-press, but not during lunges and sit-
ups. If the user is performing an exercise where dumbbell
classification is not appropriate, then a weight of 0 lbs is
classified.

If instead it is appropriate for the user to be lifting
dumbbells, then the system follows three steps to classify
the weight: skeletal mapping, image subtraction, and con-
centration thresholding.

1) Skeletal Mapping: First, we want to establish a map-
ping from the three-dimensional skeletal vectors to the two-
dimensional RGB image. To accomplish this, we define a
function f : R3 → R2 such that f(αi) = βi for i =
1, 2, ..., n where n is the number of joints analyzed. Then
for each αi = (1, xi, yi, zi) we construct two matrices A
and B, such that

AαT
i αiB ≈ βi,∀i

To do so, we iteratively solve for A and B using linear
projection. Starting with a guess for B, we solve for AT

in the over-constrained problem (αT
i αiB)TAT = βT

i . The
linear projection formula to solve for x in Mx = b is

x = (MTM)−1MT b

To encapsulate the data for all values of i in the
original problem, let b = (βT

1 , β
T
2 , ...β

T
n )T , and M =

((αT
1 α1B)T , (αT

2 α2B)T , ...(αT
nαnB)T )T . With this new

value for A, solve for a new B in the same way. Continuing
this process until A and B converge, we find the closest
projection of the three-dimensional skeletal vectors to the
two-dimensional image.

Next, we locate the three-dimensional joints associated
with each hand in the two-dimensional image. Because the
dumbbells being lifted are very near the hands, we discard
all parts of the image except a small rectangle around the
position of the hands in our subsequent weight detection
analysis.

2) Image Subtraction: By subtracting the RGB values of
successive images from one another, we identify areas with
the largest change in colour between successive frames. We
pass these image differences through a binary thresholding
filter to establish which areas change colour significantly. By
softening the edges around the thresholded images using a
moving average filter, we establish a continuous weighting
of areas with the largest and most recent colour changes.
This procedure is depicted in Figure 5.

3) Concentration Thresholding: We superimpose the
weighting generated using image subtraction with the rect-
angle of interest around the position of the hands to establish
the relative weight with which to consider each pixel in the
rectangles. In this way, pixels that experience more recent
colour change are weighted higher than those that do not.

By taking the weighted sum of each pixel’s proximity to
blue, aqua and purple hues, we determine the most likely
colour of the dumbbells. The weight associated with this
dumbbell colour is then uploaded to the cloud database along
with the exercise and repetition information.

IV. RESULTS

To verify the efficacy of our system, we use 29 minutes
of verification data that the neural net is not trained on. This
includes 41 sets of 10 repetitions, spanning all 11 exercises
and variants. Overall, the exercises are classified correctly
with 97% accuracy, the weights are identified correctly with
100% accuracy, and the repetitions are counted with 84%
accuracy. We provide several specifications to these results
in the list below:

• Of the 41 sets, only one set of kneeling-row is misclas-
sified as lateral-arm-raise.

• Every time the user is not exercising, the Exercise
Classification Subsystem correctly classifies the current
exercise as ’NULL’.

• 28 of the 41 exercises use dumbbells and the remaining
13 exercises do not use dumbbells. The weight is
correctly classified in all 41 cases.

• As each exercise has 10 repetitions, all 10 repetitions
are correctly counted in 20 of the 41 exercises.



• Many of the exercises in which the repetitions are not
counted correctly count either 9 or 11 repetitions, only
1 repetition away from the correct value. The additional
or omitted repetition occurs exclusively at the beginning
and end of the exercise window.

• The sum of absolute error for each exercise in repetition
counting is 65 repetitions out of the 410, giving the
metric that 84% of the repetitions are correctly counted.

V. CONCLUSION
This research shows that machine vision can be used to

effectively classify user exercises, weights and repetitions
with high accuracy. As neither academia nor industry cur-
rently have the ability to track user workouts at scale, this
project demonstrates the viability of machine vision as a long
term solution to workout classification. Importantly, this re-
search addresses the tracking of free-weight and bodyweight
exercises which constitute the current bottleneck of fitness
tracking.

However, a key input to this classification system is
the skeletal vector data of users. Before this system can
be implemented at scale, it is paramount that systems for
accurate skeletal generation be developed for use in larger
areas.

Our ongoing research focuses on the precursor to a large-
scale skeletal tracking system. Namely, by installing several
depth sensing cameras in a room, we are developing a
computationally efficient algorithm to provide a real-time
stream of three-dimensional information about the room. In
this research, it is critical to address the stitching together
of multiple depth and RGB images to create an accurate
representation of objects in the room. From this stream of
three-dimensional information, a neural network can be used
to track human movement and generate skeletal representa-
tions of their bodies.

Once this skeletal tracking system is ready to be deployed
at scale, the results from this research could be applied to
real fitness facilities to fully automate the fitness tracking
process.
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