Learning to Understand: Identifying Interactions via the Möbius Transform

Problem

Deep learning models are getting better, but not any easier to understand.

- A popular approach for building explanations of models involves looking at first-order approximations, like the well known Shapley Value.
- **First order models can miss important structures critical for explanation.**
- Example: A sentiment analysis LLM trained on the IMDB dataset:

■ The word "never" has a negative first-order sentiment, but is involved in critical second order interactions, making its net effect positive.

Figure 1: Presented are 1^{st} , 2^{nd} and 3^{rd} order Möbius coefficients. While *never* and fails have negative sentiments, combined they are strongly positive. In the second row, the word *never* is deleted, changing overall sentiment. The Shapley values $SV(\cdot)$ are less informative.

The Möbius Transform

- The model for higher order interactions is called the Möbius Transform: Inverse: $f(\mathbf{m}) = \sum F(\mathbf{k})$, Forward: $F(\mathbf{k}) = \sum (-1)^{\mathbf{1}^T(\mathbf{k}-\mathbf{m})} f(\mathbf{m})$ **k***≤***m m***≤***k** Naïve computation is exponential in number of features *n*.
- The Shapley Values SV(·) and Banzhaf Values BZ(·) can be written as:
- The key to identifying a singletons is to construct "delayed" versions of *u*: $u_{cp}(\boldsymbol{\ell}) = f$ $\sqrt{\mathbf{H}_c^{\text{T}}\overline{\boldsymbol{\ell}}+\mathbf{d}_p}$) $\iff U_c(\mathbf{j}) =$ \sum *F*(**k**)*.*
- A "delay" is a membership test on \bf{k} . Repeating, we construct $\bf{y} = \bf{D}\bf{k}$.
- When **k** is arbitrary we take $\mathbf{D} = \mathbf{I}$, and require *n* delays \mathbf{d}_p .
- When $|\mathbf{k}| < t$ for some t , we choose \mathbf{D} as a group testing matrix:

- Defines a bipartite graph connecting the non‐zero *F*(**k**) and *U*. ■ Use a message passing algorithm (peeling decoder) to resolve multitons.
- This is inspired by sparse graph codes for robust communication.

$$
SV(i) = \sum_{\mathbf{k}:k_i=1} \frac{1}{|\mathbf{k}|} F(\mathbf{k}), \qquad \text{BZ}(i) = \sum_{\mathbf{k}:k_i=1} \frac{1}{2^{|\mathbf{k}|-1}}
$$

F(**k**)*.*

A small number of interactions dominate the function overall.

- Choosing **H**, **D** correctly ensures we are likely to peel all non‐zero *F*(**k**). **Density evolution theory** can prove the performance of the algorithm.
-

only a small number of coefficients (sparsity), and these coefficients also have small *|***k***|* (low degree). Can we compute the Möbius transform more efficiently under these settings?

The Algorithm

Step 1: Aliasing Informed Masking Design

■ Construct the function u from samples of f with $b \ll n$, and take the Transform of u , denoted U in $b2^b$ time:

 $u_c(\boldsymbol{\ell}) = f$ $\left(\overline{\mathbf{H}^{\text{T}}_{c}}\overline{\boldsymbol{\ell}}\right)$) $\forall \ell \in \mathbb{Z}_2^b \iff U_c(\mathbf{j}) =$

Aliasing effectively hashes the coefficients $F(\mathbf{k})$ into one of 2^b bins:

Figure: (a) Sample complexity of our algorithm. Clear phase transition, with the threshold scaling linearly in *n* is visible. (b) Shows our algorithm under a noise model where *U*(**j**) are corrupted by Gaussian noise at different SNR.

$$
c(\mathbf{j}) = \sum_{\mathbf{H}_c \mathbf{k} = \mathbf{j}} F(\mathbf{k}) \ \forall \mathbf{j} \in \mathbb{Z}_2^b.
$$

Figure: Using only a small number of coefficients (sparsity), the Möbius transform computed by our method outperforms first order methods in faithfulness (R^2) to the underlying network. The gap is larger in problems with non‐linear feature relationships.

- Möbius Transform". NeurIPS (2024).
- of q -ary Functions." IEEE ISIT (2023).

The singleton coefficients can be detected, and their **k** index identified.

Step 2: Identifying Interactions via Group Testing

$$
U_c(\mathbf{j}) = \sum_{\substack{\mathbf{H}_c \mathbf{k} = \mathbf{j} \\ \mathbf{k} \leq \overline{\mathbf{d}}_p}} F(\mathbf{k}).
$$

Theory says we only require $O(t \log(n))$ **delays to ensure recovery.**

Step 3: Message Passing to Resolve Collisions

Overview

Our algorithm is non-adaptive and has rigorous performance guarantees.

We design masking patterns according to a group testing design, and perform inference of the masked inputs. If needed, the output is converted to a scalar, and the output is used to compute the Möbius Transform.

-
-

Theorems

1. (Sparse) With K non-zero interactions among all 2^n interaction, our algorithm exactly computes the Mobius transform *F*(**k**) in *O*(*Kn*) samples and $O(Kn^2)$ time with probability $1 - O(1/K)$.

2. (Sparse, Low Degree) When there are *K* non‐zero interactions all with $|\mathbf{k}| \leq t$, our algorithm computes the Mobius transform in $O(Kt \log(n))$ samples and $O(K \text{poly}(n))$ time with probability 1 *− O*(1*/K*), even under the presence of noise at any fixed SNR.

Experiments

Further Reading

[1] Kang JS, et al. "Learning to Understand: Identifying Interactions via the

[2] Erginbas, YE, Kang, JS et al.. "Efficiently Computing Sparse Fourier Transforms

Justin S. Kang¹ Yigit E. Erginbas¹ Landon Butler¹ Ramtin Pedarsani² Kannan Ramchandran¹