
Learning to Understand: Identifying Interactions via theMöbius Transform
Justin S. Kang1 Yigit E. Erginbas1 Landon Butler1 Ramtin Pedarsani2 Kannan Ramchandran1

Problem

Deep learning models are getting better, but not any easier
to understand.

A popular approach for building explanations of models involves looking
at first‐order approximations, like the well known Shapley Value.
First order models can miss important structures critical for explanation.
Example: A sentiment analysis LLM trained on the IMDB dataset:

f

Her
acting
never
fails
to

impress

=F

Her
acting
never
fails
to

impress

+F

Her
acting
never
fails
to

impress

+F

Her
acting
never
fails
to

impress

+F

Her
acting
never
fails
to

impress

+ · · ·+F

Her
acting
never
fails
to

impress

+F

Her
acting
never
fails
to

impress

+F

Her
acting
never
fails
to

impress

+ · · ·+F

Her
acting
never
fails
to

impress

+ . . .

+0.98 0.00 −0.80 −0.96 +0.59 +0.87 −0.75 −0.58 +2.59

0th Order 1st Order 2nd Order 3rd Order and Higher

f

Her
acting
never
fails
to

impress

=F

Her
acting
never
fails
to

impress

+F

Her
acting
never
fails
to

impress

+F

Her
acting
never
fails
to

impress

+ . . . +F

Her
acting
never
fails
to

impress

+ . . .

−0.96 0.00 −0.96 +0.59 −0.58

SV
[

Her
]

SV
[

acting
]

SV
[

never
]

SV
[

fails
]

SV
[

to
]

SV
[

impress
]

+0.05 +0.01 +0.32 +0.19 +0.10 +0.31

Figure 1: Presented are 1st, 2nd and 3rd order Möbius coefficients. While never and fails have
negative sentiments, combined they are strongly positive. In the second row, theword never
is deleted, changing overall sentiment. The Shapley values SV(·) are less informative.

The word “never” has a negative first‐order sentiment, but is involved in
critical second order interactions, making its net effect positive.

The Möbius Transform

The model for higher order interactions is called the Möbius Transform:
Inverse: f (m) =

∑
k≤m

F (k), Forward: F (k) =
∑

m≤k
(−1)1T(k−m)f (m)

Naïve computation is exponential in number of features n.

The Shapley Values SV(·) and Banzhaf Values BZ(·) can be written as:

SV(i) =
∑

k:ki=1

1
|k|

F (k), BZ(i) =
∑

k:ki=1

1
2|k|−1F (k).

A small number of interactions dominate the function overall.

100 101 102 103 104 105 106

Sparsity

0.00

0.25

0.50

0.75

1.00

R
2

(F
ai

th
fu

ln
es

s)

XGBoost for Breast Cancer Diagnosis

100 101 102 103 104 105

Sparsity

0.00

0.25

0.50

0.75

1.00

R
2

(F
ai

th
fu

ln
es

s)

BERT for Sentiment Analysis

100 101 102 103 104

Sparsity

0.00

0.25

0.50

0.75

1.00

R
2

(F
ai

th
fu

ln
es

s)

BERT for Multiple Choice

0 3 6 9 12 15 18 21

Degree

0.00

0.25

0.50

0.75

1.00

R
2

(F
ai

th
fu

ln
es

s)

0 3 6 9 12 15 18

Degree

0.00

0.25

0.50

0.75

1.00

R
2

(F
ai

th
fu

ln
es

s)

0 3 6 9 12 15

Degree

0.00

0.25

0.50

0.75

1.00

R
2

(F
ai

th
fu

ln
es

s)

Figure 2: F (k) generally has a sparse structure. The functions are well‐approximated with
only a small number of coefficients (sparsity), and these coefficients also have small |k| (low
degree). Can we compute the Möbius transform more efficiently under these settings?

The Algorithm

Step 1: Aliasing Informed Masking Design

Construct the function u from samples of f with b ≪ n, and take the
Transform of u, denoted U in b2b time:

uc(ℓ) = f
(
HT

c ℓ
)

∀ℓ ∈ Zb
2 ⇐⇒ Uc(j) =

∑
Hck=j

F (k) ∀j ∈ Zb
2.

Aliasing effectively hashes the coefficients F (k) into one of 2b bins:

u1(00) = f(110011)

u1(01) = f(110111)

u1(10) = f(111011)

u1(11) = f(111111)

u2(00) = f(111100)

u2(01) = f(111101)

u2(10) = f(111110)

u2(11) = f(111111)

U1(00) = 0

U1(01) = F (k3)

U1(10) = F (k1)

U1(11) = F (k2) + F (k4)

U2(00) = F (k1) + F (k2) + F (k3)

U2(01) = F (k4)

U2(10) = 0

U2(11) = 0

Her
acting
never
fails
to

impress

=

0

0

1

0

0

0

= k1

Her
acting
never
fails
to

impress

=

0

0

0

1

0

0

= k3

Her
acting
never
fails
to

impress

=

0

0

1

1

0

0

= k2

Her
acting
never
fails
to

impress

=

0

0

1

1

0

1

= k4

Aliasing 1

Aliasing 2

Non-zero Interactions Transform

Zeroton

Singleton

Multiton

The singleton coefficients can be detected, and their k index identified.

Step 2: Identifying Interactions via Group Testing

The key to identifying a singletons is to construct “delayed” versions of u:
ucp(ℓ) = f

(
HT

c ℓ + dp

)
⇐⇒ Uc(j) =

∑
Hck=j
k≤dp

F (k).

A “delay” is a membership test on k. Repeating, we construct y = Dk.
When k is arbitrary we take D = I, and require n delays dp.
When |k| < t for some t, we choose D as a group testing matrix:

Decode
y k1

k1 =

D =

yHer acting never fails to impress

0 0 0 1 1 1 0
0 1 1 0 0 1 1
1 0 1 0 1 0 1

Theory says we only require O(t log(n)) delays to ensure recovery.

Step 3: Message Passing to Resolve Collisions

Defines a bipartite graph connecting the non‐zero F (k) and U .
Use a message passing algorithm (peeling decoder) to resolve multitons.
This is inspired by sparse graph codes for robust communication.

Recovered Singleton

Subtract

Sampling Group c = 1 Sampling Group c = 2

Choosing H, D correctly ensures we are likely to peel all non‐zero F (k).
Density evolution theory can prove the performance of the algorithm.

Overview

X Masker Deep Neural
Network

Scalarizer
(if needed)

y

The [MASK] goldfish
possesses an [MASK]
body, a high dorsal

[MASK], and a long
quadruple [MASK] fin.

= Pr (“Fantails”)
× Pr (“can” | “Fantails”)
× Pr (“grow” | “Fantails can”)

Likelihood of
generating

unmasked output

Group Testing
Mask Design m Fast Sparse

Möbius Decoder FX(m)

fX(m)

We design masking patterns according to a group testing design, and
perform inference of the masked inputs. If needed, the output is converted

to a scalar, and the output is used to compute the Möbius Transform.

Our algorithm is non‐adaptive and has rigorous performance guarantees.

Theorems

1. (Sparse) With K non‐zero interactions among all 2n interaction, our
algorithm exactly computes the Mobius transform F (k) in O(Kn)
samples and O(Kn2) time with probability 1 − O(1/K).

2. (Sparse, Low Degree) When there are K non‐zero interactions all
with |k| ≤ t, our algorithm computes the Mobius transform in
O(Kt log(n)) samples and O(K poly(n)) time with probability
1 − O(1/K), even under the presence of noise at any fixed SNR.

Experiments

2100 2200 2300 2400 2500 2600 2700 2800 2900 21000
100 200 300 400 500 600 700 800 900 1000n

N

104

105

106

S
am

p
le

C
om

p
le

x
it

y

0%

20%

40%

60%

80%

100%

P
erfect

R
econ

stru
ction

%

(a)

0 5 10 15 20 25

SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

R
2

(F
ai

th
fu

ln
es

s)

t = 6

t = 8

t = 10

t = 12

(b)
28 210 212 214 216 218 220 222 224 226 228 230
8 10 12 14 16 18 20 22 24 26 28 30n

N

0

1

2

3

4

5

6

7

8

9

10

R
u

n
ti

m
e

C
o
m

p
le

x
it

y
(s

ec
)

SHAP IQ

LASSO

SMT

(c)

Figure: (a) Sample complexity of our algorithm. Clear phase transition, with the threshold
scaling linearly in n is visible. (b) Shows our algorithm under a noise model where U(j) are
corrupted by Gaussian noise at different SNR.

0 6 12 18 24 30 36 42 48 54

Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

R
2

(F
ai

th
fu

ln
es

s)

XGBoost for Breast Cancer Diagnosis
(n = 30)

0 5 10 15 20 25 30 35 40

Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

R
2

(F
ai

th
fu

ln
es

s)

BERT for Sentiment Analysis
(n ≈ 25)

0 3 6 9 12 15 18 21

Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

R
2

(F
ai

th
fu

ln
es

s)

BERT for Multiple Choice
(n = 15)

Shapley Values Banzhaf Values Faith-Banzhaf Indices SMT (Algorithm 1)

Figure: Using only a small number of coefficients (sparsity), the Möbius transform com‐
puted by our method outperforms first order methods in faithfulness (R2) to the underlying
network. The gap is larger in problems with non‐linear feature relationships.

Further Reading
[1] Kang JS, et al. ”Learning to Understand: Identifying Interactions via the

Möbius Transform”. NeurIPS (2024).

[2] Erginbas, YE, Kang, JS et al.. ”Efficiently Computing Sparse Fourier Transforms
of q‐ary Functions.” IEEE ISIT (2023).

Neural Information Processing Systems (NeurIPS), Vancouver, Dec. 2024

