

# Problem

Deep learning models are getting better, but not any easier to understand.

- A popular approach for building explanations of models involves looking at first-order approximations, like the well known Shapley Value.
- First order models can miss important structures critical for explanation.
- Example: A sentiment analysis LLM trained on the IMDB dataset:



**Figure 1**: Presented are  $1^{st}$ ,  $2^{nd}$  and  $3^{rd}$  order Möbius coefficients. While *never* and *fails* have negative sentiments, combined they are strongly positive. In the second row, the word never is deleted, changing overall sentiment. The Shapley values  $SV(\cdot)$  are less informative.

• The word "never" has a negative first-order sentiment, but is involved in critical second order interactions, making its net effect positive.

# The Möbius Transform

- The model for higher order interactions is called the Möbius Transform: Inverse:  $f(\mathbf{m}) = \sum_{\mathbf{k} \leq \mathbf{m}} F(\mathbf{k})$ , Forward:  $F(\mathbf{k}) = \sum_{\mathbf{m} \leq \mathbf{k}} (-1)^{\mathbf{1}^{\mathrm{T}}(\mathbf{k}-\mathbf{m})} f(\mathbf{m})$ Naïve computation is exponential in number of features n.
- The Shapley Values  $SV(\cdot)$  and Banzhaf Values  $BZ(\cdot)$  can be written as:

$$SV(i) = \sum_{\mathbf{k}:k_i=1} \frac{1}{|\mathbf{k}|} F(\mathbf{k}), \qquad BZ(i) = \sum_{\mathbf{k}:k_i=1} \frac{1}{2^{|\mathbf{k}|-1}}$$

• A small number of interactions dominate the function overall.



**Figure 2**:  $F(\mathbf{k})$  generally has a sparse structure. The functions are well-approximated with only a small number of coefficients (sparsity), and these coefficients also have small  $|\mathbf{k}|$  (low degree). Can we compute the Möbius transform more efficiently under these settings?

# Learning to Understand: Identifying Interactions via the Möbius Transform

 $-F(\mathbf{k}).$ 

## Step 1: Aliasing Informed Masking Design

• Construct the function u from samples of f with  $b \ll n$ , and take the Transform of u, denoted U in  $b2^b$  time:

 $u_c(\boldsymbol{\ell}) = f\left(\overline{\mathbf{H}_c^{\mathrm{T}} \overline{\boldsymbol{\ell}}}\right) \quad \forall \boldsymbol{\ell} \in \mathbb{Z}_2^b \iff U_c$ 

• Aliasing effectively hashes the coefficients  $F(\mathbf{k})$  into one of  $2^b$  bins:

### Non-zero Interactions



• The singleton coefficients can be detected, and their  $\mathbf{k}$  index identified.

# Step 2: Identifying Interactions via Group Testing

- The key to identifying a singletons is to construct "delayed" versions of u:  $u_{cp}(\boldsymbol{\ell}) = f\left(\mathbf{H}_c^{\mathrm{T}} \overline{\boldsymbol{\ell}} + \mathbf{d}_p\right) \iff$
- A "delay" is a membership test on  $\mathbf{k}$ . Repeating, we construct  $\mathbf{y} = \mathbf{D}\mathbf{k}$ .
- When **k** is arbitrary we take  $\mathbf{D} = \mathbf{I}$ , and require *n* delays  $\mathbf{d}_p$ .
- When  $|\mathbf{k}| < t$  for some t, we choose **D** as a group testing matrix:

| $\mathbf{k}_1 =$ | Her | acting | never            | fails | to | imp |
|------------------|-----|--------|------------------|-------|----|-----|
|                  | 0   | 0      | 0                | 1     | 1  | 1   |
| $\mathbf{D} =$   | 0   | 1      | (1)              | 0     | 0  | 1   |
|                  | 1   | 0      | $\overline{(1)}$ | 0     | 1  | C   |

• Theory says we only require  $O(t \log(n))$  delays to ensure recovery.

## Step 3: Message Passing to Resolve Collisions

- Defines a bipartite graph connecting the non-zero  $F(\mathbf{k})$  and U. • Use a message passing algorithm (peeling decoder) to resolve multitons.
- This is inspired by **sparse graph codes** for robust communication.



- Choosing H, D correctly ensures we are likely to peel all non-zero  $F(\mathbf{k})$ . • **Density evolution theory** can prove the performance of the algorithm.

Justin S. Kang<sup>1</sup> Yigit E. Erginbas<sup>1</sup> Landon Butler<sup>1</sup> Ramtin Pedarsani<sup>2</sup> Kannan Ramchandran<sup>1</sup>

# The Algorithm

$$F_c(\mathbf{j}) = \sum_{\mathbf{H}_c \mathbf{k} = \mathbf{j}} F(\mathbf{k}) \ \forall \mathbf{j} \in \mathbb{Z}_2^b.$$

### Transform

| Aliasing 1 |           |   |                                     |                    |
|------------|-----------|---|-------------------------------------|--------------------|
| -          | $U_1(00)$ | = | 0                                   | Zeroton            |
|            | $U_1(01)$ | = | $F(\mathbf{k}_3)$                   | Singleton          |
|            | $U_1(10)$ | = | $F(\mathbf{k}_1)$                   | Multiton           |
|            | $U_1(11)$ | = | $F(\mathbf{k}_2) + F(\mathbf{k}_4)$ |                    |
|            |           |   |                                     |                    |
| Aliasing 2 |           |   |                                     |                    |
|            | $U_2(00)$ | = | $F(\mathbf{k}_1) + F(\mathbf{k}_2)$ | $+F(\mathbf{k}_3)$ |
|            | $U_2(01)$ | = | $F(\mathbf{k}_4)$                   |                    |
|            | $U_2(10)$ | = | 0                                   |                    |
|            | $U_2(11)$ | = | 0                                   |                    |

$$U_c(\mathbf{j}) = \sum_{\substack{\mathbf{H}_c \mathbf{k} = \mathbf{j} \\ \mathbf{k} \le \overline{\mathbf{d}}_p}} F(\mathbf{k}).$$





We design masking patterns according to a group testing design, and perform inference of the masked inputs. If needed, the output is converted to a scalar, and the output is used to compute the Möbius Transform.



Figure: (a) Sample complexity of our algorithm. Clear phase transition, with the threshold scaling linearly in n is visible. (b) Shows our algorithm under a noise model where  $U(\mathbf{j})$  are corrupted by Gaussian noise at different SNR.



Figure: Using only a small number of coefficients (sparsity), the Möbius transform computed by our method outperforms first order methods in faithfulness ( $R^2$ ) to the underlying network. The gap is larger in problems with non-linear feature relationships.

- Möbius Transform". NeurIPS (2024).
- [2] Erginbas, YE, Kang, JS et al.. "Efficiently Computing Sparse Fourier Transforms of q-ary Functions." IEEE ISIT (2023).





**Overview** 

Our algorithm is **non-adaptive** and has **rigorous performance guarantees**.

### Theorems

1. (Sparse) With K non-zero interactions among all  $2^n$  interaction, our algorithm exactly computes the Mobius transform  $F(\mathbf{k})$  in O(Kn)samples and  $O(Kn^2)$  time with probability 1 - O(1/K).

2. (Sparse, Low Degree) When there are K non-zero interactions all with  $|\mathbf{k}| \leq t$ , our algorithm computes the Mobius transform in  $O(Kt \log(n))$  samples and  $O(K \operatorname{poly}(n))$  time with probability 1 - O(1/K), even under the presence of noise at any fixed SNR.

## **Further Reading**

[1] Kang JS, et al. "Learning to Understand: Identifying Interactions via the



# Experiments