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Problem

Deep learning models are getting better, but not any easier
to understand.

A popular approach for building explanations of models involves looking
at first‐order approximations, like the well known Shapley Value.
First order models can miss important structures critical for explanation.
Example: A sentiment analysis LLM trained on the IMDB dataset:
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Figure 1: Presented are 1st, 2nd and 3rd order Möbius coefficients. While never and fails have
negative sentiments, combined they are strongly positive. In the second row, theword never
is deleted, changing overall sentiment. The Shapley values SV(·) are less informative.

The word “never” has a negative first‐order sentiment, but is involved in
critical second order interactions, making its net effect positive.

The Möbius Transform

The model for higher order interactions is called the Möbius Transform:
Inverse: f (m) =

∑
k≤m

F (k), Forward: F (k) =
∑

m≤k
(−1)1T(k−m)f (m)

Naïve computation is exponential in number of features n.

The Shapley Values SV(·) and Banzhaf Values BZ(·) can be written as:

SV(i) =
∑

k:ki=1

1
|k|

F (k), BZ(i) =
∑

k:ki=1

1
2|k|−1F (k).

A small number of interactions dominate the function overall.
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Figure 2: F (k) generally has a sparse structure. The functions are well‐approximated with
only a small number of coefficients (sparsity), and these coefficients also have small |k| (low
degree). Can we compute the Möbius transform more efficiently under these settings?

The Algorithm

Step 1: Aliasing Informed Masking Design

Construct the function u from samples of f with b ≪ n, and take the
Transform of u, denoted U in b2b time:

uc(ℓ) = f
(
HT

c ℓ
)

∀ℓ ∈ Zb
2 ⇐⇒ Uc(j) =

∑
Hck=j

F (k) ∀j ∈ Zb
2.

Aliasing effectively hashes the coefficients F (k) into one of 2b bins:

u1(00) = f(110011)

u1(01) = f(110111)

u1(10) = f(111011)

u1(11) = f(111111)

u2(00) = f(111100)

u2(01) = f(111101)

u2(10) = f(111110)

u2(11) = f(111111)

U1(00) = 0

U1(01) = F (k3)

U1(10) = F (k1)

U1(11) = F (k2) + F (k4)

U2(00) = F (k1) + F (k2) + F (k3)

U2(01) = F (k4)

U2(10) = 0

U2(11) = 0
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The singleton coefficients can be detected, and their k index identified.

Step 2: Identifying Interactions via Group Testing

The key to identifying a singletons is to construct “delayed” versions of u:
ucp(ℓ) = f

(
HT

c ℓ + dp

)
⇐⇒ Uc(j) =

∑
Hck=j
k≤dp

F (k).

A “delay” is a membership test on k. Repeating, we construct y = Dk.
When k is arbitrary we take D = I, and require n delays dp.
When |k| < t for some t, we choose D as a group testing matrix:

Decode
y k1

k1 =

D =

yHer acting never fails to impress

0 0 0 1 1 1 0
0 1 1 0 0 1 1
1 0 1 0 1 0 1

Theory says we only require O(t log(n)) delays to ensure recovery.

Step 3: Message Passing to Resolve Collisions

Defines a bipartite graph connecting the non‐zero F (k) and U .
Use a message passing algorithm (peeling decoder) to resolve multitons.
This is inspired by sparse graph codes for robust communication.

Recovered Singleton

Subtract

Sampling Group c = 1 Sampling Group c = 2

Choosing H, D correctly ensures we are likely to peel all non‐zero F (k).
Density evolution theory can prove the performance of the algorithm.

Overview
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Network
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The [MASK] goldfish
possesses an [MASK]
body, a high dorsal

[MASK], and a long
quadruple [MASK] fin.

= Pr (“Fantails”)
× Pr (“can” | “Fantails”)
× Pr (“grow” | “Fantails can”)
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generating

unmasked output

Group Testing
Mask Design m Fast Sparse

Möbius Decoder FX(m)

fX(m)

We design masking patterns according to a group testing design, and
perform inference of the masked inputs. If needed, the output is converted

to a scalar, and the output is used to compute the Möbius Transform.

Our algorithm is non‐adaptive and has rigorous performance guarantees.

Theorems

1. (Sparse) With K non‐zero interactions among all 2n interaction, our
algorithm exactly computes the Mobius transform F (k) in O(Kn)
samples and O(Kn2) time with probability 1 − O(1/K).

2. (Sparse, Low Degree) When there are K non‐zero interactions all
with |k| ≤ t, our algorithm computes the Mobius transform in
O(Kt log(n)) samples and O(K poly(n)) time with probability
1 − O(1/K), even under the presence of noise at any fixed SNR.

Experiments
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Figure: (a) Sample complexity of our algorithm. Clear phase transition, with the threshold
scaling linearly in n is visible. (b) Shows our algorithm under a noise model where U(j) are
corrupted by Gaussian noise at different SNR.
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Figure: Using only a small number of coefficients (sparsity), the Möbius transform com‐
puted by our method outperforms first order methods in faithfulness (R2) to the underlying
network. The gap is larger in problems with non‐linear feature relationships.
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