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Abstract

One of the most fundamental problems in ma-
chine learning is finding interpretable represen-
tations of the functions we learn. The Mobius
transform is a useful tool for this because its coef-
ficients correspond to unique importance scores
on sets of input variables. The Mobius Transform
is strongly related (and in some cases equivalent)
to the concept of Shapley value, which is a widely
used game-theoretic notion of importance. This
work focuses on the (typical) regime where the
fraction of non-zero Mobius coefficients (and thus
interactions between inputs) is small compared to
the set of all 2n possible interactions between
n inputs. When there are K = O(2nδ) with
δ ≤ 1

3 non-zero coefficients chosen uniformly
at random, our algorithm exactly recovers the Mo-
bius transform in O(Kn) samples and O(Kn2)
time with vanishing error as K → ∞, the first
non-adaptive algorithm to do so. We also uncover
a surprising connection between group testing and
the Mobius transform. In the case where all inter-
actions are between at most t = Θ(nα) inputs, for
α < 0.409, we are able to leverage results from
group testing to provide the first algorithm that
computes the Mobius transform in O(Kt log n)
sample complexity and O(K poly(n)) time with
vanishing error as K → ∞. Finally, we present
a robust version of this algorithm that achieves
the same sample and time complexity under some
assumptions, but with a factor depending on noise
variance. Our work is deeply interdisciplinary,
drawing from tools spanning across signal pro-
cessing, algebra, information theory, learning the-
ory and group testing to address this important
problem at the forefront of machine learning.
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1. Introduction
In the age of machine learning, where we learn complex
functions that we almost universally fail to understand, a
natural question to ask is: What is the most fundamental
interpretable representation of the functions we learn? Con-
cepts like Shapley value (Lundberg & Lee, 2017) are used
to interpret model predictions, assigning importance scores
to single inputs (features, data samples, etc.). The Shapley
value is the weighted average marginal contribution of a
given input, i.e., how much the function changes when the
input is included or not. Recent works extend this concept
to assigning importance to sets of inputs (Fumagalli et al.,
2023; Tsai et al., 2023). What makes all of these repre-
sentations interpretable is that they represent the function
in terms of the marginal effect of inputs (or groups of in-
puts). The Mobius Transform is a transformation onto this
understandable basis that most other explanation techniques
use. For instance, a function f with 4 inputs, 2 of which are
active, can be broken down in terms of its Mobius transform
F as illustrated below:

Base function value

Marginal effect of 2nd input

Marginal effect of 3rd input

Marginal effect of 2nd and 3rd input together

A function is evaluated by summing over all the interactions
between all the active inputs, and since the space of all
interactions is a basis, the transform F is unique. Other
importance metrics can be viewed as projections onto a
subset of the Mobius basis. For instance, the Shapley values
come from a projection onto the first order basis functions
(corresponding to individual marginal effects) under the
Shapley kernel error metric.

The complicated functions we learn from deep learning
typically do not have boolean inputs, but in order to try to
understand them, a common approach is to convert them
locally to a function with boolean inputs. Fig. 1 considers a
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Figure 1. We consider a sentiment analysis problem where the movie review “Her acting never fails to impress” is passed into the BERT
language model fine-tuned on the task of sentiment analysis. On the left we present several 1st, 2nd and 3rd order Mobius coefficients,
with positive valued interactions in green and negative ones in red computed via (2). The Mobius coefficients explain how groups of
words influence how BERT perceives the overall sentiment of a sentence. For instance, while never and fails have strongly negative
sentiment on their own, when combined, they impose a profound positive sentiment.

sentiment analysis problem using a version of BERT (Devlin
et al., 2019) fine-tuned on the IMDB dataset (Lee, 2023).
The objective of the model is to classify the sentiment of
the review as positive or negative. Our goal is to understand
why the model makes the decision it does. The movie review
in Fig. 1 has n = 6 words. We construct a boolean function
f , where the inputs determine which of 6 words are left
unmasked before we feed in into BERT. When we mask
none of the words (top of Fig 1), BERT correctly determines
that the sentiment is positive. Since all the inputs are “active”
(not masked), this can be retrieved by summing all Mobius
interactions F . Generally, we write for f : Zn

2 → R

f(m) =
∑

k≤m

F (k), (1)

where k ≤m means that ki ≤ mi ∀i. All the inputs being
active corresponds to m = 1, so the inequality condition
means we sum over all 26 interactions. Examining these
interactions can tell us about BERT: it understands double
negatives (see the interaction between “never” and “fails”)
as well as the positive sentiment of the word “impress”.

Fig. 1 also shows what happens when we mask “never”.
Following (1), we exclude interactions involving “never”.
Since “never” is involved in many positive interactions,
the sentiment is overall negative. This is the power of the

Mobius transform: we can see precisely the interactions
that cause this shift. This is a significant advantage over
first order metrics like the Shapley value. The value of
the Mobius transform is apparent, but given its complex
structure, is it possible to compute it efficiently? Shown
below is the definition of F (this is the “forward” Mobius
transform where (1) is the “inverse” transform):

F (k) =
∑

m≤k

(−1)1T(k−m)f(m). (2)

In general, to compute F (k) for all k ∈ Zn
2 requires all 2n

samples from f , as well as n2n time using a divide-and-
conquer approach similar to that of the Fast Fourier Trans-
form (FFT) algorithm. ChatGPT-3.5 currently supports in
the range of 800 words-per-prompt. Running inference 2800

times is not even close to possible, and even if you could,
2800 coefficients is hardly interpretable!

In Fig. 1 we see that many coefficients are small compared
to those with the largest magnitude. This is typical. The
solution to the computational problem is to just focus on
computing the largest Mobius interactions and ignore
the small ones. Is this possible in a systematic way? We
answer this question in the affirmative. Assuming that for
all but K values of k we have F (k) = 0 (which K values
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are significant is unknown), our algorithm enables us to
intelligently select points to significantly reduce the num-
ber of samples of f(m) that are required to determine F
to O(Kn) with O(Kn2) time. We also explore the regime
where the non-zero interactions occur between at most t in-
puts, with t≪ n, showing that only O(Kt log(n)) samples
are required in O(K poly(n)) time. We also have a robust
algorithm that allows for some noise in the sampling pro-
cess, effectively relaxing the constraint that the F (k) = 0
are exactly zero while maintaining the complexity.

1.1. Main Contributions

Our algorithm and proofs are deeply interdisciplinary. We
use modern ideas spanning across signal processing, algebra,
coding and information theory, and group testing to address
this important problem at the forefront of machine learning.

• With K non-zero Mobius coefficients chosen uniformly
at random, the Sparse Mobius Transform (SMT) algo-
rithm exactly recovers the transform F in O(Kn) sam-
ples and O(Kn2) time in the limit as n → ∞ with K
growing at most as 2nδ with δ ≤ 1

3 .

• We develop a formal connection with group testing and
present a variant of SMT that works when all non-zero
interactions are low order (between only a small num-
ber of coordinates). If the maximum order of interac-
tion is t = Θ(nα) where α < 0.409 then we can com-
pute the Mobius transform in O(Kt log(n)) samples in
O(K poly(n)) time with error going to zero as n→∞
with growing K.

• Leveraging robust group testing, we develop an algorithm
that, under certain assumptions, computes the Mobius
transform in O(Kt log(n)), with vanishing error in the
limit as n→∞ with growing K.

In addition to our asymptotic performance analysis, we also
provide synthetic experiments that verify that our algorithm
performs well even in the finite n regime. Furthermore,
our results are non-adaptive meaning that sampling can be
parallelized. We note that several of our guarantees require
that K or t is not too large. For instance, for some results
we require K = O(2nδ) with δ ≤ 1

3 .

1.2. Notation

Lowercase boldface x and uppercase boldface X denote vec-
tors and matrices respectively. x ≥ y means that xi ≥ yi ∀i.
Multiplication is always standard real field multiplication,
but addition between two elements in Z2 should be in-
terpreted as a logical OR ∨. We also define subtraction,
of x − y for x ≥ y by standard real field subtraction. x̄
corresponds to bit-wise negation for boolean x, and x⊙ y
represents an element-wise multiplication. We say g1(n) =
O(g2(n)), if there exists some constant A and some n0 such

that g1(n) ≤ Ag2(n) ∀n ≥ n0. We say g1(n) = Θ(g2(n))
if g1(n) = O(g2(n)) and there exists some constant B and
some n1 such that g1(n) ≥ Bg2(n) ∀n ≥ n0.

2. Related Works and Applications
This work is inspired by the literature on sparse Fourier
transforms, which began with Hassanieh et al. (2012), Sto-
bbe & Krause (2012) and Pawar & Ramchandran (2013).
The sparse boolean Fourier (Hadamard) transform (Li et al.,
2014; Amrollahi et al., 2019) is most relevant.

Group Testing This manuscript establishes a strong con-
nection between the interaction identification problem and
group testing (Aldridge et al., 2019). Group testing was first
described by Dorfman (1943), who noted that when testing
soldiers for syphilis, pooling blood samples from many sol-
diers, and testing the pooled blood samples reduced the total
number of tests needed. Zhou et al. (2014) were the first
to exploit group testing in a feature selection/importance
problem, using a group testing matrix in their algorithm.
Jia et al. (2019) also mention group testing in relation to
Shapley values.

Mobius Transform The Mobius transform (Grabisch
et al., 2000) is well known in the literature on pseudo-
boolean functions (set functions). Wendler et al. (2021)
develop a general framework for computing transforms of
pseudo-boolean functions. They do not directly consider
the Mobius transform as we define it, but their framework
can compute a range of K sparse transforms in O(n2K −
nK log(K)) adaptive samples and O(n2K + K2n) time.
Below, we describe some applications to machine learning.

Explainability Lundberg & Lee (2017) suggest explain-
ing models by transforming it into a pseudo-boolean func-
tion and approximating it using the Shapley value, amount-
ing to only using the first order Mobius coefficients. In
Tsai et al. (2023), a higher order version of this idea is in-
troduced, named Faithful Shapley Interaction index (FSI),
which uses up to t-th order Mobius interactions. In Fuma-
galli et al. (2023) a new computational approach is devised
that generally outperforms other methods for computing the
FSI. Other cardinal interaction indices (CII) are also stud-
ied. We provide an explanation on the relationship between
the Mobius transform, FSI, and standard Shapley value in
Appendix A. We also note the many other extensions of
Shapley values (Harris et al., 2022; Jullum et al., 2021).

Data Valuation and Auctions In data valuation (Jia et al.,
2019) the goal is to assign an importance score to data, ei-
ther to determine a fair price (Kang et al., 2023), or to curate
a more efficient dataset (Wang & Jia, 2023). A feature of
this problem is the high cost of getting a sample, since we
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need to determine the accuracy of our model when trained
on different subsets of data. Ghorbani & Zou (2019); Ghor-
bani et al. (2020) try to approximate this by looking at the
accuracy of partially trained models, though this introduces
sampling noise. Banzhaf values have also been proposed as
a robust alternative (Wang & Jia, 2023). Combinatorial auc-
tions are another important application area (Leyton-Brown
et al., 2000). We discuss auctions more in Section 7.

3. Problem Setup
In general computing (2) requires sampling f for all 2n

possible input combinations, which is impractical even for
modest n. For an arbitrary f , one cannot do any better.
In fact, the same is true of the Shapley value—so why do
computational software packages like SHAP (Lundberg &
Lee, 2017) exist? It is because interesting f are not arbitrary.
If f is a classifier that takes in many features, it is likely
some of these features will be complementary (when they
appear together, the probability of a class is increased or
decreased further) or substitutive (meaning when they occur
together, the sum of their effects is diminished). Similarly,
it is rather unlikely that there are significant interactions
between large numbers of features simultaneously. This
idea that only a small fraction of the total 2n interactions
will be significant is considered in the following assumption:

Assumption 3.1. (K uniform interactions) f : Zn
2 7→ R has

a Mobius transform of the following form: k1, . . . ,kK are
sampled uniformly at random from Zn

2 , and have F (ki) ̸=
0, ∀i ∈ [K], but F (k) = 0 for all other k ∈ Zn

2 .

We might also expect most of the meaningful interactions to
be between a small number of inputs. We characterize this
with the following assumption:

Assumption 3.2. (K t-degree interactions) f : Zn
2 7→ R

has a Mobius transform of the following form: k1, . . . ,kK

are sampled uniformly from {k : |k| ≤ t,k ∈ Zn
2}, and

have F (ki) ̸= 0, ∀i ∈ [K], but F (k) = 0 other k ∈ Zn
2 .

In practice, we might not expect the non-zero interactions
to be exactly zero. We investigate this in Section 5.

4. Algorithm Overview
4.1. Subsampling and Aliasing

In the first part of the algorithm, we perform functional
subsampling: We construct u, such that for b < n

u(ℓ) = f(mℓ), ℓ ∈ Zb
2, mℓ ∈ Zn

2 , (3)

where we have the freedom to choose mℓ. A very important
part of the algorithm is understanding that the Mobius trans-
form of u, denoted U , is related to F via the well-known

signal processing phenomenon of aliasing:

U(j) =
∑

k∈A(j)

F (k), (4)

where A(j) corresponds to an aliasing set determined by
mℓ. Fig. 2 shows this subsampling procedure on a “sparsi-
fied” version of our sentiment analysis example using two
different mℓ. Our goal is to choose mℓ such that the non-
zero values of F (k) are uniformly spread across the aliasing
sets, since that makes them easier to recover. If only a single
k with non-zero F (k) ends up in an aliasing set A(j), we
call it a singleton. In Fig. 2, our first subsampling generated
two singletons, while our second one generated only one.
Maximizing the number of singleton is one of our goals,
since we can ultimately use those singetons to construct the
Mobius transform. In this work, we have determined two
different subsampling procedures that are asymptotically
optimal under our two assumptions:

Lemma 4.1. We choose mℓ = HTℓ, which results in
A(j) = {k : Hk = j}. H should be chosen as follows:

1. Under Assumption 3.1, we choose H = [Ib×b0b,n−b], or
any column permutation of this matrix.

2. Under Assumption 3.2 with t = Θ(nα) for α ≤ 0.409,
we choose H to be b rows of a properly chosen group
testing matrix.

If chosen this way, each of the non-zero indices are mapped
to the 2b sampling setsA(j) independently and uniformly at
random, thus maximizing singletons when b = Θ(log(K)).

A thorough discussion of this result is provided in Ap-
pendix B.2. We also provide a slightly stronger version
that extends independence across multiple H, as is required
for our overall result. The proof of this lemma touches many
areas of mathematics, including the theory of monoids, in-
formation theory, and optimal group testing.

4.2. Singleton Detection and Identification

Although singletons are useful, we cannot immediately use
them to recover F (k). We first need a way to know that a
given U(j) is a singleton. Secondly, we also need a way
to identify what value of k that singleton corresponds to.
Section 5 explains how to accomplish both tasks. Below, we
discuss the final part of the algorithm with the assumption
that we can accomplish both tasks.

4.3. Message Passing to Resolve Collisions

Since we don’t know the non-zero indices beforehand, col-
lisions between multiple non-zero indices ending up in the
same aliasing set is inevitable. These are called multitons.
One approach to deal with these multitons is to repeat the
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u1(00) = f(110011)

u1(01) = f(110111)

u1(10) = f(111011)

u1(11) = f(111111)

u2(00) = f(111100)

u2(01) = f(111101)

u2(10) = f(111110)

u2(11) = f(111111)

U1(00) = 0

U1(01) = F (k3)

U1(10) = F (k1)

U1(11) = F (k2) + F (k4)

U2(00) = F (k1) + F (k2) + F (k3)

U2(01) = F (k4)

U2(10) = 0

U2(11) = 0
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Figure 2. This figure considers a “sparsified” version of the Mobius coefficients depicted in Fig 1, keeping only the largest 4 depicted. Two
different sampling choices are shown, as well as the resulting aliasing sets. In the first aliasing set, there is one zeroton, two singletons and
one multiton. In the second aliasing set, there is two zerotons, one singleton and one multiton.

procedure over again. Thus, we take samples of the form:

uc(ℓ) = f(mc,ℓ), ⇐⇒ Uc(j) =
∑

k∈Ac(j)

F (k), (5)

c = 1, . . . , C. Each time, we get different aliasing sets
Ac(j) and we uncover a different set of singletons, and thus
find a different set of k with non-zero indices F (k). While
this approach works, a better approach is to combine this
idea with a message passing algorithm to use known non-
zero indices and values (k, F [k]) to resolve these multitons
and turn them into singletons. The particular type of mes-
sage passing algorithm we use is called graph peeling. The
aliasing structure can be represented as a bipartite graph like
in Fig. 3. Each Uc(j) is a check node, and each non-zero
coefficient F (k) is a variable node. The variable note F (k)
is connected to the check node Uc(j) if Hck = j. Fig. 3
constructs this bipartite graph for the aliasing in Fig. 2. Note
that U1(11) = F (k2)+F (k4) is a multiton; however, in the
other sub-samping group U2(01) = F (k4) is a singleton.
Once we resolve U2(01), we can simply subtract F (k4)
from U1(11), allowing us to create a new singleton, and
extract F (k2). The remaining values of F both appear as
singletons in the first sampling group, so we can resolve all
4 non-zero interactions F with only 8 (7 unique) samples.
Peeling algorithms were first popularized in information
and coding theory as a method of decoding fountain codes
(Luby, 2002) and have been widely used. They can be ana-
lyzed using density evolution theory (Chung et al., 2001),
which we use in Appendix B.6 as part of our proof.

5. Singleton Detection and Identification
We have discussed how to subsample efficiently to maxi-
mize singletons and how to use message passing to recover
as many interactions as possible. Now we discuss (1) how

Recovered Singleton

Subtract

Sampling Group c = 1 Sampling Group c = 2

Figure 3. Depiction of our peeling message passing algorithm for
the samples in Fig. 2. The singleton in U2(01) is subtracted
(peeled) so we can resolve F (k2) from U1(11).

to identify singletons and (2) how to determine the k∗ cor-
responding to the singleton. The following result is key:

Lemma 5.1. Consider H ∈ Zb×n
2 , and f : Zn

2 7→ R, and
some d ∈ Zn

2 . If U is the Mobius transform of u, and F is
the Mobius transform of f we have:

u(ℓ) = f
(
HT

cℓ+ d
)
⇐⇒ U(j) =

∑

Hk=j

k≤d

F (k). (6)

The proof is found in Appendix B.4. The form of (6) allows
us to reduce the aliasing set in a controlled way. Define
dc,0 := 0n, and Dc ∈ ZP×n

2 for some P > 0. The ith row
of Dc is denoted dc,p, p = 1 . . . , P . Using these vectors,
we construct C(P +1) different subsampled functions uc,p:

uc,p(ℓ) = f
(
HT

cℓ+ dc,p

)
, ∀ℓ ∈ Zb

2. (7)

Then, we compute the Mobius transform of each uc,p de-
noted Uc,p. Let Uc(j) := [Uc,0(j), . . . , Uc,P (j)]

T. The goal
of singleton detection is to identify when Uc[j] reduces to a
single term, and for what value k that term corresponds to.
To do so, we define the Type (·):
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Algorithm 1 Sparse Mobius Transform (SMT)

1: Input: {Hc}Cc=1, Hc ∈ Zb×n
2 , {Di}Cc=1 Dc ∈ ZP×n

2

2: F̂ (k)← 0 ∀k; K ← ∅;
3: for c = 1 to C do
4: for p = 1 to P do
5: uc,p(ℓ)← f

(
HT

cℓ+ dc,p

)
∀ℓ ∈ Zb

2

6: Uc,p ← FastMobius (uc,p)
7: end for
8: end for
9: S = {(c, j,k, v) : Detect (Uc(j)) = HS(k, v)}

10: while |S| > 0 do
11: for (c, j,k, v) ∈ S with k ∈ K do
12: F̂ (k)← v; K ← K ∪ {k}
13: for c = 1 to C do
14: Uc(Hck)← Uc(Hck)− F̂ (k)(1−Dck)
15: end for
16: end for
17: Update S : Re-run Detect (·)
18: end while
19: Output: F̂

1. Type (Uc[j]) = HZ denotes a zeroton, for which there
does not exist F [k] ̸= 0 such that Hk = j.

2. Type (Uc[j]) = HS(k, F [k]) denotes a singleton with
only one k with F [k] ̸= 0 such that Hk = j.

3. Type (Uc[j]) = HM denotes a multiton for which there
exists more than one F [k] ̸= 0 such that Hk = j.

In addition, we define the following ratios:

yc,p := 1− Uc,p(j)

Uc,0(j)
p = 1, . . . , P, (8)

and the corresponding vector yc := [yc,1, . . . , yc,P ]
T. We

use the following rule as our best guess for the type:

Detect (Uc[j]) :=





HZ , Uc[j] = 0

HM , yc /∈ {0, 1}P
HS(k, F [k]), yc ∈ {0, 1}P

. (9)

By considering the definition of Uc it is possible to show
that when Type (Uc[j]) = HS(k

∗, F [k∗]) that

yc = Dck
∗. (10)

Thus, to recover k∗, it always suffices to take Dc =
I, and thus P = n. It also follows immediately that
Detect (Uc[j]) = Type (Uc[j]) under this choice. We can’t
do better if we don’t have any extra information about k∗,
but we can if we know |k∗| ≤ t as we show below. Going
back to our example in Fig. 2, with Dc = I we use a total
of 8× 6 = 48 samples as opposed to 26 = 64.

Singleton Identification in the Low-Degree Setting
Let’s say we want to determine the singleton from U1(10) in
Fig. 2, and we know |k∗| ≤ 1. The following Dc suffices:

Dc =




1 1 1 1 1 1
1 1 1 1 0 0
1 1 0 0 1 1
1 0 1 0 1 0


 . (11)

This matrix is essentially doing a binary search. The first
row checks if there are any 1, the next two rows check which
third of the vectors the 1 is in, and the final row resolves
any remaining ambiguity. It requires P = 4, rather than
the P = 6 for Dc = I. If all non-zero F (k) had satisfied
|k| ≤ 1, we could use this matrix for our example in Fig. 2.
However, we only have |k| ≤ 3, so Dc as in (11) would not
suffice. In the case of general t Bay et al. (2022) says that for
any scaling of t with n, there exists a group testing design
Dc with P = O(t log(n)) that can recover k∗ in the limit as
n→∞ with vanishing error in poly(n) time, also implying
Detect (Uc[j]) has vanishing error (see Appendix B.7.2).

Extension to Noisy Setting It is practically important to
relax the assumption that most of the coefficients are ex-
actly zero. To do this, we assume each subsampled Mobius
coefficient is corrupted by noise:

Uc,p(j) =
∑

Hck=j

k≤dp

F (k) + Zc,p(j), (12)

where Zc,p(j)
i.i.d.∼ N (0, σ2). There are two main changes

that must be made compared to the noiseless case. First,
we must place an assumption on the magnitude of non-
zero coefficients |F (ki)|, such that the signal-to-noise ratio
(SNR) remains fixed. Secondly, the matrix Dc must be
modified. It now consists of two parts: Dc = [D

(1)
c ;D

(2)
c ].

D
(2)
c ∈ ZP2×n

2 is a standard noise robust Bernoulli group
testing matrix. Using the results of (Scarlett & Johnson,
2020), we can show that P2 = O(t log(n)) suffices for any
fixed SNR. Unlike the noiseless case, the samples from the
rows of D(2)

c are not enough to ensure vanishing error of
the Detect (·) function. For this we construct D(1)

c , which
is also a Bernoulli group testing matrix, but with a different
probability. In Appendix B.7.4 we show that a modified ver-
sion of Detect (·) has vanishing error if P1 = O(t log(n)).

6. Theoretical Guarantees
Now that we have discussed all the major components of
the algorithm, we present out theoretical guarantees:

Theorem 6.1. (Recovery with K Uniform Interactions) Let
f satisfy Assumption 3.1 for some K = O(2nδ) with δ ≤ 1

3 .
For {Hc}Cc=1 chosen as in Lemma B.3 with b = O(log(K)),

6
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Figure 4. Perfect reconstruction against n and sample complexity
under Assumption 3.1. Holding C = 3, we scale b to increase
the sample complexity. We observe that the number of samples
required to achieve perfect reconstruction is scaling linearly in n
as predicted.

C = 3 and Dc = I, Algorithm 1 exactly computes the trans-
form F in O(Kn) samples and O(Kn2) time complexity
with probability at least 1−O(1/K).

Theorem 6.2. (Noisy Recovery with K tth Order Inter-
actions) Let f satisfy Assumption 3.2 for some K and
t = Θ(nα) for α ≤ 0.409. For {Hc}Cc=1 chosen as in
Lemma B.4 with b = O(log(K)), C = 3 and Dc chosen as
a suitable group testing matrix. Let Uc,p be of the form (12)
for the noisy case, and let all non-zero |F (k)| = ρ again
for the noisy case only. Algorithm 1 exactly computes the
transform F in O(Kt log(n)) samples and O(K poly(n))
time complexity with probability at least 1 − O(1/K) in
both the noisy and noiseless case.

The proof of Theorem 6.1 and 6.2 is provided in Ap-
pendix B.5. The argument combines the results on aliasing,
singleton detection and peeling. We note that the require-
ment |F (k)| = ρ is only due to limitations of group testing
theory, and inequality suffices in practice.

7. Numerical Experiments
7.1. Synthetic Experiments

We now evaluate the performance of SMT on functions
generated according to Assumption 3.1 and 3.2. Non-zero
coefficients F (k) take values uniformly over [−1, 1]. We
implement SMT as described in Algorithm 1, with group
testing decoding via linear programming (Appendix E.2).

Fig. 4 plots the percent of runs where SMT exactly recon-
structs F with fixed K = 100 at different sample complex-
ities and values of n. The transition threshold for perfect
reconstruction is linear in n, as predicted by the theory.
Note that we vastly outperform the naive approach: when
n = 1000, we get perfect reconstruction with only 10−294
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Figure 5. Plot of the noise-robust version of our algorithm. For
various values of t, we set n = 500 and K = 500, using a group
testing matrix with P = 1000. We plot the performance of our
algorithm against SNR, measured in terms of the NMSE (13).
Error bands represent the standard deviation over 10 runs.

percent of total samples!

Fig. 5 shows SMT under a noisy setting. All other parame-
ters are fixed, with K = 500, n = 500, and P = 1000. We
plot the error in terms of

NMSE = ∥F̂ − F∥2/ ∥F∥2 (13)

versus signal to noise ratio (SNR), where F̂ is our estimated
Mobius transform. For lower t, we see that SMT is more
robust. This is because t = 6 has the most redundant
samples, resulting in improved robustness. Increasing P
further improves robustness.

Fig. 7 plots the runtime for our algorithm until perfect recon-
struction compared to two competing methods. Functions f
are sampled such that they each have K = 10 non-zero Mo-
bius coefficients, and all non-zero interactions have |k| = 5
(restricted to equality rather than inequality due to limita-
tions in the SHAP-IQ code). We compare against SHAP-IQ
(Fumagalli et al., 2023) configured to compute the 5th order
Faith Shapley Index (FSI), as well as the method of Tsai
et al. (2023) which computes 5th order FSI via LASSO. As
shown in Appendix A, the tth order FSI are exactly the tth

order Mobius interactions for our chosen f , so all methods
compute the same thing. Fig. 7 shows these algorithms
scale at least poly(n) in this setting, while ours scales as
log(n). This figure exemplifies the fact that while these
other methods can be useful for small enough n, for identi-
fying interactions on the scale of n ≥ 100, SMT is the only
viable option. Additional simulations and discussion can be
found in Appendix D.

7.2. Combinatorial Auctions

For large-scale combinatorial auctions, due to the impracti-
cality of collecting complete value functions f over all 2n

7
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airport slot allocations and for being allocated time on a shared resource, respectively. (Right) Across 100 realizations of bidder value
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computing the Mobius transform in the setting where all non-zero
interactions are order t. SMT easily outperforms both, and scaling
as log(n) while the other methods become intractable. Error bands
represent standard deviation over 10 runs.

possible allocations over n items, one may seek to elicit bid-
ders’ underlying preferences through a limited number of
queries (Conen & Sandholm, 2001). The Mobius transform
F identifies the complementary effects between items, such
as receiving both a takeoff and landing slot in an airport
runway slot allocation auction. We investigate the use of
our algorithm to learn and explain bidder value functions
for two settings from the Combinatorial Auction Test Suite
(Leyton-Brown et al., 2000).

Matching Many combinatorial auctions concern the al-
location of corresponding time chunks across multiple re-
sources, such as an airport slot allocation auction. This
distribution models the allocation of runway use for four
congested U.S. airports, each with n/4 possible time inter-
vals. Bidders (airlines) are interested in securing slots to
both takeoff and land along their routes of interest, with
sufficient separation to complete the flight.

Scheduling To manage the use of time on a resource (such
as a server or conference room), a combinatorial auction

can be used to allocate n time intervals. In this distribution,
bidders are interested in receiving a continuous sequence of
intervals necessary to complete their task, with their value
for a sequence diminishing if not completed by a deadline.

As shown in Weissteiner et al. (2020), many value functions
exhibit Fourier sparsity, which can be exploited to learn
them with small sample complexity. In Fig. 6, we report the
number of Mobius coordinates needed for exact recovery
and the number Fourier coordinates necessary to capture
99% of the spectral energy with n = 20 and n = 400 items
up for auction. While the value functions of bidders can be
represented in hundreds or thousands of Fourier coordinates,
they can be fully recovered in dozens of Mobius coordinates.

Fig. 6 shows the performance of SMT for recovering value
functions under both the matching and scheduling settings
when n = 400. With enough samples, SMT reconstructs
the functions perfectly, even though both types of value
functions violate Assumptions 3.1 and 3.2 since interactions
are heavily correlated. Despite this, our algorithm fully
recovers the value function with efficient sample and time
complexity, though not as efficiently as our synthetic setting,
where our assumptions are satisfied.

8. Conclusion
Identifying interactions between inputs is an important open
research question in machine learning, with applications
to exaplinability, data valuation, auctions, and many other
problems. We approached this problem by studying the
Mobius transform, which is a representation over the fun-
damental interaction basis. We introduced several exciting
new tools to the problem of identifying interactions. The use
of ideas from sparse signal processing and group testing has
allowed SMT to operate in regimes where all other methods
fail due to computational burden. Our theoretical results
guarantee asymptotic exact reconstruction and are compli-
mented by numerical simulations that show SMT performs
well with finite parameters and also under noise.

8
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Future Work Applying SMT to real world tasks like un-
derstanding protein language models (Lin et al., 2022), LLM
chatbots (OpenAI, 2023) or diffusion models (Kingma et al.,
2021), would be insightful. Working with large and com-
plicated models will likely require further improvements
to robustness—both in terms of dealing with noise from
small but non-zero interactions, and dealing with potential
correlations between interactions. Some interesting ideas in
this direction could be using more standards statistical ideas
like in Fumagalli et al. (2023), or considering concepts from
adaptive group testing. Finally, it would be interesting to
see if the techniques used here can improve other algorithms
for computing Shapley or Banzhaf values directly.

Impact Statement
Rigorous tools for understanding models can potentially
profoundly increase trust in deep learning systems. If we
can understand and reason for ourselves why a model is
making a decision, we can put greater trust into those deci-
sions. Furthermore, if we understand why a model is doing
something that we believe is incorrect, we can better steer it
towards doing what we believe is correct. This “steering” of
model behavior is sometimes described as alignment, and
is a critical task for addressing things like incorrect or mis-
leading information generated by a model, or for address
any undesirable biases. In terms of concerns, it is important
to not misinterpret or over-interpret the interaction indices
that come out of SMT. It could be the case that looking over
some selection of interactions doesn’t reveal the full picture,
and leads one down an incorrect line of reasoning.
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Püschel, M. Fourier analysis-based iterative combinato-
rial auctions. arXiv preprint arXiv:2009.10749, 2020.

Wendler, C., Amrollahi, A., Seifert, B., Krause, A., and
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A. Relationship between Mobius Transform and Other Importance Metrics
We being with some notation. We define the Mobius basis function (which are all possible products of inputs) as:

bk(m) :=
∏

i:ki=1

mi. (14)

Now we define the following sub-spaces of pseudo-boolean function in terms of the linear span of Mobius basis functions:

Mt := span{bk(m) : |k| ≤ t}. (15)

Now we define the projection operator Projµ(f,Mt), as the projection of the function f onto the tth order Mobius basis
functions with respect to the measure µ. Let ci be the coefficient corresponding to this projection. If g(m) = Projµ(f,Mt),
we write its decomposition as g(m) =

∑
k≤t c(f,Mt, µ,k)bk(m).

Shapley Value The Shapley values SV(i) (Shapley, 1952) of the inputs mi, i = 1, . . . , n with respect to the function f
are (Hammer & Holzman, 1992):

SV(i) = c(f,M1, σ, ei), (16)

where σ is the Shapley kernel. SV(i) = F (ei) when f is a linear function.

Banzhaf Index The Banzhaf index BZ(i) of the inputs mi, i = 1, . . . , n with respect to the function f are (Hammer &
Holzman, 1992):

BZ(i) = c(f,M1, µ, ei), (17)

where µ is the uniform measure. BZ(i) = F (ei) when f is a linear function.

Faith Shapley Interaction Index The tth order Faith Shapley interaction index SVt(k) for |k| ≤ t (Tsai et al., 2023) is

SVt(k) = c(f,Mt, σ,k), (18)

where σ is the Shapley kernel. SVt(k) = F (k) when f is a tth order function, i.e., F (k) = 0 when |k| > t.

Faith Banzhaf Interaction Index The tth order Faith Shapley interaction index BZt(k) for |k| ≤ t (Tsai et al., 2023) is

BZt(k) = c(f,Mt, µ,k), (19)

where µ is the uniform measure. BZt(i) = F (k) when f is a tth order function, i.e., F (k) = 0 when |k| > t.

B. Missing Proofs
B.1. Boolean Arithmetic

Below we have the addition and multiplication table for arithmetic between x, y ∈ Z2. We also note that Z2 is typically
used to refer to the integer ring modulo 2. The arithmetic we are describing here is actually that of a monoid. Since the
audience for this paper is people interested in machine learning, we continue to use Z2 since it is commonly used to simply
refer to the set {0, 1}.

Addition Table

+ x = 1 x = 0

y = 1 1 1
y = 0 1 0

Multiplication Table

× x = 1 x = 0

y = 1 1 0
y = 0 0 0

Subtraction Table

− x = 1 x = 0

y = 1 0 1
y = 0 N/A 0

Table 1. Addition, Multiplication and Subtraction table for boolean arithmetic in this paper. Subtraction is for y − x.
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B.2. Discussion of Aliasing of the Mobius Transform

When a function has many small or zero Mobius coefficients (interactions), our goal is to subsample (3) in such a way
that the aliasing causes the non-zero coefficients to end up in different aliasing sets (4) (as opposed to all of them being
aliased together, making them more difficult to reconstruct). Lemma B.1 is a key tool that we will use in this work to design
subsampling patterns that result in good aliasing patterns.
Lemma B.1. Consider H ∈ Zb×n

2 , b < n and f : Zn
2 7→ R. Let

u(ℓ) = f
(
HTℓ

)
, ∀ℓ ∈ Zb

2. (20)

If U is the Mobius transform of u, and F is the Mobius transform of f we have:

U(j) =
∑

Hk=j

F (k). (21)

This lemma is a powerful tool, allowing us to control the aliasing sets through the matrix H. The proof can be found
in Appendix B.3, and is straightforward, given the relationship between u and f . Understanding why we choose this
relationship, however, is more complicated. Underlying this choice is the algebraic theory of monoids and abstract algebra.

As we have mentioned, our ultimate goal is to design H to sufficiently “spread out” the non-zero indices among the aliasing
sets. Below, we define a simple and useful construction for H.
Definition B.2. Consider {i1, . . . , ib} = I ⊂ [n], with |I| = b, and H ∈ Zb×n

2 . Let hi correspond to the ith row of H,
given by hi = eij , the length n unit vector in coordinate ij . Then if we subsample according to (20) we have:

U(j) =
∑

k : ki=ji ∀i∈I

F (k). (22)

which happens to result in aliasing sets A(j) = {k : ki = ji ∀i ∈ I} all of equal size 2b. The above choice H actually
induces a rather simple sampling procedure when we follow (20). For instance if I = [b], we have:

u(ℓ) = f
(
[ℓ;1n−b]

)
, (23)

In other words, in this case, we construct samples by freezing n − b of the inputs to 1 and then varying the remaining b
inputs across all the 2b possible options. In the case where the non-zero Mobius interactions are chosen uniformly at random,
this construction does a good job at spacing them out across the various aliasing sets. The following result formalizes this.
Lemma B.3. (Uniform interactions) Let k1, . . . ,kK be sampled uniformly at random from Zn

2 , where F (ki) ̸= 0, ∀i ∈ [K],
but F (k) = 0 for all other k ∈ Zn

2 . Construct disjoint sets Ic ⊂ [n] for c = 1, . . . , C, and the corresponding matrix Hc

according to Definition B.2. Let Ac(j) correspond to the aliasing sets after sampling with respect to matrix Hc. Now define:

j such that ki ∈ Ac(j) := jci . (24)

Then if b = O(log(K)), K = O(2n/C), in the limit as n→∞ with C = O(1), jci are mutually independent and uniformly
distributed over Zb

2.

The proof is given in Appendix B.6.1, and follows directly from the form of the aliasing sets Ac(j). Corollary B.3 means
that using H as constructed in Definition B.2 ensures that we all k with F (k) ̸= 0 are uniformly distributed over the aliasing
sets, which maximizes the number of singletons. This result, however, hinges on the fact that the non-zero coefficients are
uniformly distributed. We are also interested in the case where the non-zero coefficients are all low-degree. In order to
induce a uniform distribution in this case, we need to exploit a group testing matrix.
Lemma B.4. (Low-degree interactions) Let k1, . . . ,kK be sampled uniformly at random from {k : |k| ≤ t,k ∈ Zn

2},
where F (ki) ̸= 0, ∀i ∈ [K], but F (k) = 0 for all other k ∈ Zn

2 . By constructing C matrices Hc, c = 1, . . . , C from
rows of a near constant column weight group testing matrix, and sampling as in (20), if t = Θ(nα) for α < 0.409, and
b = O(log(K)), K = O(nt), in the limit as n → ∞, jci as defined in (24) are mutually independent and uniformly
distributed over Zb

2.

The proof is given in Appendix B.6.2. It relies on an information theoretic argument, exploiting a result from optimal group
testing (Coja-Oghlan et al., 2020).
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B.3. Proof of Lemma B.1

Proof. Taking the Mobius transform of u gives us:

U(k) =
∑

ℓ≤k

(−1)1T (k−ℓ)u(ℓ)

=
∑

ℓ≤k

(−1)1T (k−ℓ)f

(⊙

i:ℓi=0

hi

)

=
∑

ℓ≤k

(−1)1T (k−ℓ)
∑

r≤⊙
i:ℓi=0 hi

F (r)

=
∑

ℓ∈Zb
2

(−1)1T (k−ℓ)1{ℓ ≤ k}
∑

r∈Zn
2

F (r)1

{
r ≤

⊙

i:ℓi=0

hi

}

=
∑

r∈Zn
2

F (r)


∑

ℓ∈Zb
2

(−1)1T (k−ℓ)1{ℓ ≤ k}1
{
r ≤

⊙

i:ℓi=0

hi

}


=
∑

r∈Zn
2

F (r)I(r)

Now let’s just focus on the term in the parenthesis for now, which we have called I(r).

Case 1: Hr = k

I(r) =
∑

ℓ≤k

(−1)1T (k−ℓ)1

{
r ≤

⊙

i:ℓi=0

hi

}
(25)

First note that under this condition, ℓ = k =⇒ r ≤⊙i:ℓi=0 hi. To see this, note that kj = 0 =⇒ r ≤ hj . Since this
holds for all j such that kj = 0, we have the previously mentioned implication.

Conversely, if ℓj < kj (this means ℓj = 0 AND kj = 1) for some j, then r and hj must overlap. Thus,

1
{
r ≤ hj

}
= 0 =⇒ 1

{
r ≤

⊙

i:ℓi=0

hi

}
= 0

We can split I(r) into two parts, the part where ℓ = k and the part where ℓ < k:

I(r) = 1

{
r ≤

⊙

i:ki=0

hi

}
+
∑

ℓ<k

(−1)1T (k−ℓ)1

{
r ≤

⊙

i:ℓi=0

hi

}
(Hr = k) (26)

= 1 +
∑

ℓ<k

0 (27)

= 1 (28)

Case 2: Hr ̸= k Let Hr = k′ ̸= k. This case itself will be broken into two parts. First let’s say there is some j such that
kj = 0 and k′j = 1. Since k′j = 1 we know that 1

{
r ≤ hj

}
= 0. Furthermore, since ∀ℓ ∈ {ℓ : ℓ ≤ k} we have ℓj = 0.

Then by a similar argument to our previous one, we have 1
{
r ≤⊙i:ℓi=0 hi

}
= 0 ∀ℓ ≤ k. It follows immediately that

I(r) = 0 in this case.

Finally, we have the case where k′ < k. First, if there is a coordinate j such that 0 = ℓj < k′j = 1, we know that
1
{
r ≤ hj

}
= 0 so we have 1

{
r ≤⊙i:ℓi=0 hi

}
= 0 ∀ℓ s.t. ∃j, ℓj < k′j . The only ℓ that remain are those such that

14
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k′ ≤ ℓ ≤ k. It is easy to see that this is a sufficient condition for 1
{
r ≤⊙i:ℓi=0 hi

}
= 1.

I(r) =
∑

ℓ≤k

(−1)1T (k−ℓ)1

{
r ≤

⊙

i:ℓi=0

hi

}
(29)

=
∑

k′≤ℓ≤k

(−1)1T (k−ℓ) (30)

= 0 (31)

Where the final sum is zero because exactly half of the ℓ have even and odd parity respectively.

Thus, the subsampling pattern becomes:
U(k) =

∑

Hr=k

F (r).

B.4. Proof of Section 5

U(k) =
∑

ℓ≤k

(−1)1T (k−ℓ)u(ℓ)

=
∑

ℓ≤k

(−1)1T (k−ℓ)f

((⊙

i:ℓi=0

hi

)
⊙ d

)

=
∑

ℓ≤k

(−1)1T (k−ℓ)
∑

r≤⊙
i:ℓi=0 hi

F (r)1
{
r ≤ d

}

=
∑

ℓ∈Zb
2

(−1)1T (k−ℓ)1{ℓ ≤ k}
∑

r∈Zn
2

F (r)1

{
r ≤

⊙

i:ℓi=0

hi

}
1
{
r ≤ d

}

=
∑

r∈Zn
2

F (r)1
{
r ≤ d

}

∑

ℓ∈Zb
2

(−1)1T (k−ℓ)1{ℓ ≤ k}1
{
r ≤

⊙

i:ℓi=0

hi

}


=
∑

r∈Zn
2

F (r)1
{
r ≤ d

}
I(r)

=
∑

Hr=k
r≤d

F (r)

B.5. Proof of Main Theorems

Theorem 6.1. (Recovery with K Uniform Interactions) Let f satisfy Assumption 3.1 for some K = O(2nδ) with δ ≤ 1
3 . For

{Hc}Cc=1 chosen as in Lemma B.3 with b = O(log(K)), C = 3 and Dc = I, Algorithm 1 exactly computes the transform F
in O(Kn) samples and O(Kn2) time complexity with probability at least 1−O(1/K).

Theorem 6.2. (Noisy Recovery with K tth Order Interactions) Let f satisfy Assumption 3.2 for some K and t = Θ(nα)
for α ≤ 0.409. For {Hc}Cc=1 chosen as in Lemma B.4 with b = O(log(K)), C = 3 and Dc chosen as a suitable group
testing matrix. Let Uc,p be of the form (12) for the noisy case, and let all non-zero |F (k)| = ρ again for the noisy case
only. Algorithm 1 exactly computes the transform F in O(Kt log(n)) samples and O(K poly(n)) time complexity with
probability at least 1−O(1/K) in both the noisy and noiseless case.

Proof. The first step for proving both Theorem 6.1 and Theorem 6.2 is to show that Algorithm 1 can successfully recover all
Mobius coefficients with probability 1−O(1/K) under the assumption that we have access to a Detect (Uc(j)) function
that can output the type Type (Uc(j)) for any aliasing set Uc(j). Under this assumption, we use density evolution proof
techniques to obtain Theorem B.5 and conclude both theorems.
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Then, to remove this assumption, we need to show that we can process each aliasing set Uc(j)correctly, meaning that each
bin is correctly identified as a zeroton, singleton, or multiton. Define E as the error event where the detector makes a mistake
in O(K) peeling iterations. If the error probability satisfies Pr(E) ≤ O(1/K), the probability of failure of the algorithm
satisfies

PF = Pr
(
F̂ ̸= F |Ec

)
Pr(Ec) + Pr

(
F̂ ̸= F |E

)
Pr(E)

≤ Pr
(
F̂ ̸= F |Ec

)
+ Pr(E)

= O(1/K).

In the following, we describe how we achieve Pr(E) ≤ O(1/K) under different scenarios.

In the case of uniformly distributed interactions without noise, singleton identification and detection can be performed
without error as described in Section B.7.1. In the case of interactions with low-degree and without noise, singleton
identification and detection can be performed with vanishing error as described in Section B.7.2. Lastly, we can perform
noisy singleton identification and detection with vanishing error for low-degree interactions as described in Section B.7.2.

B.6. Density Evolution Proofs

The density evolution proof is generally separated into two parts.

• We show that with high probability, nearly all of the variable nodes will be resolved.

• We show that with high probability, the graph is a good expander, which ensures that if only a small number are
unresolved, the remaining variable nodes will be resolved.

Whether the decoding succeeds or fails depends entirely on the graph (or rather distribution over graphs) that is induced
by the algorithm. The graph ensemble is parameterized as G

(
D, {Mc}c∈[C]

)
. D is the support distribution. The set

of non-zero Mobius coefficients {r :M[f ](r) ̸= 0} ∼ D is drawn from this distribution. In (Li et al., 2014), using the
arguments above it is shown that if the following conditions hold, the peeling message passing successfully resolves all
variable nodes:

1. In the limit as n → ∞ asymptotic check-node degree distribution from an edge perspective converges to that of
independent an identically distributed Poisson distribution (shifted by 1).

2. The variable nodes have a constant degree C ≥ 3 (This is needed for the expander property).

3. The number of check nodes b in each of the C sampling group is such that 2b = O(K).

Theorem B.5 (Li et al. (2014)). If the above three conditions hold, the peeling decoder recovers all Mobius coefficients with
probability 1−O(1/K).

In the following section, we show that for suitable choice of sampling matrix, these conditions are satisfied, both in the case
of uniformly distributed and low degree Mobius coefficients.

B.6.1. UNIFORM DISTRIBUTION

In order to satisfy the conditions for the case of a uniform distribution of we use the matrix in Corollary B.3. We select
C = 3 different I1, I2, I3 such that Ii∩ Ij = ∅ ∀i ̸= j ∈ {1, 2, 3}. Note that this satisfies condition (2) above. Furthermore,
we let k scale as O(2nδ). In order to satisfy condition (3), we must have δ < 1

3 , since each Ii can consist of at most 1
3 of all

the coordinates.

We now introduce some notation. Let gj(·) represent the hash function, that maps a frequency r to a check node index
k in each subsampling group j = 1, . . . , C, i.e., gj(r) = Hjr. Per our assumption, we have K non-zero variable notes
r(1), . . . , r(K) chosen uniformly at random. Technically, we are sampling without replacement, however, since K

2n → 0, the
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probability of selecting a previously selected r(i) vanishes. Going forward in this subsection, we will assume that each ri is
sampled with replacement for a more brief solution. A more careful analysis that deals with sampling with replacement
before taking limits yields an identical result.

First, let’s consider the marginal distribution of gj(r
(i)) for some arbitrary j ∈ [C] and i ∈ [K]. Assuming sampling with

replacement, we have:

Pr
(
gj(r

(i)) = k
)
= Pr

(
r
(i)
Ij

= k
)
=
∏

m∈Ij

Pr
(
r(i)m = km

)
=

1

2b
. (32)

Thus, we have established that the our approach induces a uniform marginal distribution over the 2b check nodes. Next, we
consider the independence of our bins. By assuming sampling with replacement, we can immediately factor our probability
mass function.

Pr


⋂

i,j

gj(r
(i)) = k(i,j)


 =

∏

i

Pr


⋂

j

gj(r
(i)) = k(i,j)


 (33)

Furthermore, since we carefully chose the Ii such that they are pairwise disjoint, we have

Pr


⋂

j

gj(r
(i)) = k(i,j)


 = Pr


⋂

j

r
(i)
Ij

= k(i,j)


 =

∏

j

Pr
(
r
(i)
Ij

= k(i,j)
)
=
∏

j

Pr
(
gj(r

(i)) = k(i,j)
)
, (34)

establishing independence. Let’s define an inverse load factor η = 2b

K . From a edge perspective, sampling with replacement
with independent uniformly distributed gives us:

ρj = jη

(
K

j

)(
1

2b

)j (
1− 1

2b

)k−j

, (35)

For fixed η, asymptotically as K →∞ this converges to:

ρj →
(1/η)j−1e−1/η

(j − 1)!
. (36)

B.6.2. LOW-DEGREE DISTRIBUTION

For this proof, we take an entirely different approach to the uniform case. We instead exploit the results of Theorem E.1,
which is about asymptotically exactly optimal group testing, and then make an information-theoretic argument. Let Xn

be a group testing matrix (constructed either by an i.i.d. Bernoulli design or a constant column weight design using the
parameters required for the given n). We don’t explicitly write the dependence of Xn on t, since by invoking Theorem E.1,
we assume some implicit relationship where t = Θ(nθ) for θ satisfying the theorem conditions. Now consider some rn
chosen uniformly at random from the

(
n
t

)
weight t binary vectors. Note that in this work we actually use what is known as

the “i.i.d prior” as opposed to the “combinatorial prior” that we have just defined. As noted in (Aldridge et al., 2019), these
are actually equivalent, so we can arbitrarily choose to work with one, and the result holds for the other as well. We define:

Yn = Xnrn. (37)

Furthermore, we define the decoding function Decn(·), which represents the deterministic procedure that successfully
recovers r with vanishing error probability. We have the following bounds on the entropy of Yn:

H(Yn) = H(Y n
1 ) +H(Y n

2 | Y n
1 ) + · · ·+H(Y n

T | Y n
1 , . . . , Y n

T−1) (38)
≤ T, (39)

where we have used the fact that binary random variables have a maximum entropy of 1. Furthermore, by the properties of
entropy we also have H(Yn) ≥ H(Dec(Yn,Xn) | Xn). Dividing through by T , we have:

H(Dec(Yn,Xn) | Xn))

T
≤ H(Yn)

T
≤ 1. (40)

17



Identifying Interactions via the Mobius Transform

Let Decn(Y
n,Xn)) = rn + errn(Y

n,Xn). It is known (see (Aldridge et al., 2019)) that Pr(errn(Yn,Xn) ̸= 0) =
O(poly(T )e−T ). Thus, we can bound the left-hand side as:

H(Dec(Yn,Xn) | Xn)

T
=

H(rn + errn(Y
n,Xn) | Xn)

T
(41)

≥ H(rn)−H(errn(Y
n,Xn) | Xn)

T
(42)

≥ H(rn)−H(errn(Y
n,Xn))

T
, (43)

Where in (42) we have used the bound H(A+B) ≥ H(A)−H(B) and the fact that Xn and rn are independent, and in
(43) we have used the fact that conditioning only decreases entropy. By the continuity of entropy and Theorem E.1, we have
that:

lim
n→∞

H(rn)−H(errn(Y
n,Xn))

T
= lim

n→∞
log
(
n
t

)

T
− lim

n→∞
H(errn(Y

n,Xn))

T
= 1− 0 = 1. (44)

This establishes that:

lim
n→∞

1

T (n)

T (n)∑

i=1

H
(
Y n
i | Yn

1:(i−1)

)
= 1. (45)

Unfortunately, this does not immediately imply that all of the summands have a limit of 1, however, it does mean that the
fraction of total summands that are less than one goes to zero (it grows as o(T (n))). Let G ⊂ N correspond to the set
containing all the indicies i of the summands that are equal to 1. By using the fact that conditioning only reduces entropy,
we have

lim
n→∞

H
(
Y n
i | Yn

Si

)
= 1, Si = {j < i, j ∈ G}, (46)

Now we define the countable sequence of random variables:

Ȳi = lim
n→∞

Y n
i , i ∈ N. (47)

By continuity of entropy, and the above limit and definition, we have:

H
(
Ȳi | ȲSi

)
= 1, (48)

Noting that conditioning only decreases entropy, we immediately have that Ȳi ∼ Bern( 12 ). Now consider some arbitrary
finite set S∗ ⊂ G. We will now prove that {Ȳi, i ∈ S∗} is mutually independent.

Proof. Let i1 < i2 < . . . < i|S∗| be an ordered indexing of the elements of S∗. Furthermore, let Qj = {iq | 1 ≤ q ≤ j}.
Assume the set {Ȳi, i ∈ Qj} is mutually independent, and use the notation YQj

to represent a vector containing all of these
entries. We have:

H(Yij+1
,YQj

) = H(YQj
) +H(Yij+1

| YQj
). (49)

However, by using the fact that conditioning only decreases entropy we have:

1 = H(Yij+1
| YSj+1

) ≤ H(Yij+1
| YQj

) ≤ H(Yij+1
) ≤ 1, (50)

thus,
H(Yij+1

| YQj
) = H(Yij+1

) = 1. (51)

This leads to the following chain of implications:

H(Yij+1
,YQj

) = H(YQj
) +H(Yij+1

) ⇐⇒ Yij+1
⊥⊥ YQj

. (52)

From this, and the initial inductive assumption, we can conclude that {Ȳi, i ∈ Qj+1} is mutually independent. The base
case of j = 1 follows from the fact that a set containing just one single random variable is mutually independent. Since
Q|S∗| = S∗ the proof is complete.
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Now let L(n) = |G ∩ [n]| we know L = Θ(T (n)), which follows from the stronger result that limn→∞
L(n)
T (n) = 1. Take

b ≤ L(n)
C By leveraging the above results, we can select our subsampling matrices {Hi}Ci=1 from suitable rows of Xn. Let

S
(n)
1 , . . . , S

(n)
C ⊂ G ∩ [n],

∣∣∣S(n)
i

∣∣∣ = b and S
(n)
i ∩ S

(n)
j = ∅. Then take

Hi(n) = Xn
Si,:. (53)

Due to the independence result proved above, the asymptotic degree distribution is:

ρj →
(1/η)j−1e−1/η

(j − 1)!
. (54)

B.7. Singleton Detection and Identification

B.7.1. UNIFORM INTERACTIONS SINGLETON IDENTIFICATION AND DETECTION WITHOUT NOISE

Consider a multiton where Uc(j) = F (k1) + F (k2) for k1 ̸= k2. Since any two binary vectors must differ in at least one
location, there must exist some p such that

yc,p =
Fk1

Fk1 + Fk2

/∈ {0, 1}, (55)

or
yc,p =

Fk2

Fk1
+ Fk2

/∈ {0, 1}. (56)

Furthermore, since (10) always exactly recovers k∗, we have that Detect (Uc(j)) = Type (Uc(j)).

B.7.2. LOW-DEGREE SINGLETON IDENTIFICATION AND DETECTION WITHOUT NOISE

In this case, we can simply rely on the result of Bay et al. (2022). Since Pr(k̂ ̸= k∗)→ 0, we correctly recover k∗ in the
limit, Furthermore, if Uc(j) = F (k1) + F (k2), we also must have Pr(Dck1 ̸= Dck2)→ 1. Thus, by the same argument
as above, we must also have yc /∈ {0, 1}n in the limit, implying that Detect (Uc(j)) has vanishing error in the limit.

B.7.3. SINGLETON IDENTIFICATION IN I.I.D. SPECTRAL NOISE

In this section, we discuss how to ensure that we can detect the true non-zero index r∗ from the delayed samples, under the
i.i.d. noise assumption. We first discuss the delay matrix itself, D ∈ ZP1×n

2 . As in the noiseless case, we want to choose
this matrix to be a group testing matrix. For the purposes of theory, we will choose D such that each element is drawn i.i.d.
as a Bern

(
ν
t

)
for some ν = Θ(1). We denote the ith row of D as di. Each group test is derived from one of the delayed

samples. Under the i.i.d. spectral noise model, this means each sample has the form:

Ui(k) =
∑

Hr=k
r≤di

F (r) + Zi(k) (57)

= F (r∗)1
{
r∗ ≤ d̄i

}
+ Zi(k), (58)

where Zi(k) ∼ N
(
0, σ2

)
. Essentially, we can view this as a hypothesis testing problem, where we have one sample X , and

hypothesis and the alternative are:

H0 : X = Z H1 : X = F (r∗) + Z, Z ∼ N (0, σ2)

Furthermore, lets say the magnitude of |F [k]| = ρ is known. We construct a threshold test:

φ(X) = 1 {|X| > γ} (59)

With such a test, we can compute the cross-over probabilities:

p01 = Pr
H0

(|X| > γ) = 2Q(γ/σ), (60)
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Figure 8. Symmetric cross-over probability induced by hypothesis testing problem for noisy singleton identification/detection.

p10 = Pr
H1

(|X| < γ) = Φ((γ − ρ)/σ)− Φ((−γ − ρ)/σ). (61)

For the sake of simplicity, we will make the choice to choose γ such that p10 = p01. In that case, we can numerically solve
for the cross-over probability which is fixed for a given signal-to-noise ratio.

By invoking (Scarlett & Johnson, 2020), we immediately have the following lemma.

Lemma B.6. For any fixed SNR, taking Dc such that each element is Bern
(
ν
t

)
, and t = Θ(nα) for α ∈ (0, 1), taking

P1 = O(t log(n)) suffices to ensure that the DD algorithm has with vanishing error in the limit as n→∞.

B.7.4. SINGLETON DETECTION IN I.I.D. SPECTRAL NOISE

We note that the general flow of this proof follows (Erginbas et al., 2023), but there are several fundamental differences
that make this proof overall quite different. We define Eb as the error event where a bin k is decoded wrongly, and then
using a union bound over different bins and different iterations, the probability of the algorithm making a mistake in bin
identification satisfies

Pr(E) ≤ (# of iterations)× (# of bins)× Pr(Eb)

The number of bins is at most ηK for some constant η and the number of iterations is at most CK (at least one edge is
peeled off at each iteration in the worst case). Hence, Pr(E) ≤ ηCK2Pr(Eb). In order to satisfy Pr(E) ≤ O(1/K), we
need to show that Pr(Eb) ≤ O(1/K3).

We already showed in Lemma B.6 that we can achieve singleton identification under noise with vanishing error as n→∞
with a delay matrix D ∈ ZP1×n

2 .

To achieve type detection, we construct another pair of delay matrices D1 ∈ ZP2×n
2 and D2 ∈ ZP2×n

2 . We will choose D1

and D2 such that each element is drawn i.i.d. as a Bern
(
(1/2)1/t

)
. We denote the ith row of D1 as d1

i and denote the ith

row of D2 as d2
i . Then, with these delay matrices, we can obtain observations of the form

U1
i (k) =

∑

Hr=k
r≤d

1
i

F (r) + Zi(k)

U2
i (k) =

∑

Hr=k
r≤d

2
i

F (r) + Zi(k).
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Note that we can represent these observations as

U1 = S1α+W1

U2 = S2α+W2

with W1,W2 ∼ N (0, σ2I), a α vector with entries F (r) for coefficients in the set and binary signature matrices S1,S2

with entries indicating the subsets of coefficients included in each sum.

Then, we subtract these observations to obtain a single observation U = U1 −U2 which can be written as

U = Sα+W

with W ∼ N (0, 2σ2I) and S = S1 − S2. This construction allows us to show that the columns of S are sufficiently
incoherent and hence we can correctly perform identification.

Lemma B.7. For any fixed SNR, taking D1
c and D2

c such that each element is Bern
(
(1/2)1/t

)
, and t = Θ(nα) for

α ∈ (0, 1/2) and taking P2 = O(t log(n)) suffices to ensure that the probability Pr(Eb) for an arbitrary bin can be upper
bounded as Pr(Eb) ≤ O(1/K3).

Proof. In the following, we prove that Pr(Eb) ≤ O(1/K3) holds using the observation model. We consider separate cases
where the bin in consideration is fixed as a zeroton, singleton, or multiton.

The error probability Pr(Eb) for an arbitrary bin can be upper bounded as

Pr(Eb) ≤
∑

F∈{HZ ,HM}
Pr(F ← HS(r, F (r)))

+
∑

F∈{HZ ,HM}
Pr(HS(r̂, F̂ (r))← F)

+Pr(HS(r̂, F̂ (r))← HS(r, F (r)))

above, each of these events should be read as:

1. {F ← HS(r, F (r))}: missed verification in which the singleton verification fails when the ground truth is in fact a
singleton.

2. {HS(r̂, F̂ (r)) ← F}: false verification in which the singleton verification is passed when the ground truth is not a
singleton.

3. {HS(r̂, F̂ (r))← HS(r, F (r))}: crossed verification in which a singleton with a wrong index-value pair passes the
singleton verification when the ground truth is another singleton pair.

We can upper-bound each of these error terms using Propositions B.8, B.9, and B.10. Note that all upper-bound terms decay
exponentially with P2 except for the term Pr(r̂ ̸= r) ≤ O(1/K3).

We use Theorem E.3 to show that we can achieve Pr(r̂ ̸= r) ≤ O(1/K3) if we choose P1 = O(t log n). Since all other
error probabilities decay exponentially with P2, it is clear that if P2 is chosen as P2 = O(t log n), the error probability can
be bounded as Pr(Eb) ≤ O(1/K3).

Proposition B.8 (False Verification Rate). For 0 < γ < η
4SNR, the false verification rate for each bin hypothesis satisfies:

Pr(HS(r̂, F̂ (r̂))← HZ) ≤ e−
P2
2 (

√
1+2γ−1)2 ,

Pr(HS(r̂, F̂ (r̂))← HM ) ≤ e−
P2γ2

4(1+4γ) +K2e
−ϵ

(
1− 4γν2

ρ2

)2
P2 ,

where P2 is the number of the random offsets.
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Proof. The probability of detecting a zeroton as a singleton can be upper-bounded by the probability of a zeroton failing the
zeroton verification. This means

Pr(HS(r̂, F̂ (r̂))← HZ) ≤ Pr

(
1

P2
∥W∥2 ≥ (1 + γ)ν2

)

≤ e−
P2
4 (

√
1+2γ−1)2 ,

by noting that W ∼ N (0, ν2I) and applying Lemma B.11.

On the other hand, given some multiton observation U = Sα + W, the probability of detecting it as a singleton with
index-value pair (r̂, F̂ (r̂)) can be written as

Pr(HS(r̂, F̂ (r̂))← HM ) = Pr

(
1

P2

∥∥∥U− F̂ (r̂)sr̂

∥∥∥
2

≤ (1 + γ)ν2
)

= Pr

(
1

P2
∥g + v∥2 ≤ (1 + γ)ν2

)
,

where g := S(α− F̂ (r̂)er̂) and v := W. Then, we can upper bound this probability as

Pr

(
1

P2
∥g + v∥2 ≤ (1 + γ)ν2

∣∣∣∣
∥g∥2
P2
≥ 2γν2

)
+ Pr

(∥g∥2
P2
≤ 2γν2

)
.

To upper bound the first term, we use Lemma B.11. Note that the first term is conditioned on the event ∥g∥2/P2 ≥ 2γν2, thus
the normalized non-centrality parameter satisfies θ0 ≥ 2γ. As a result, we can use Lemma B.11 by letting τ2 = (1 + γ)ν2.
Then, the first term is upper bounded by exp{−(P2γ

2)/(4(1 + 4γ))}. To analyze the second term, we let β = α− F̂ (r̂)er̂
and write g = Sβ. Denoting its support as L := supp(β), we can further write Sβ = SLβL where SL is the sub-matrix of
S consisting of the columns in L and βL is the sub-vector consisting of the elements in L. Then, we consider two scenarios:

• The multiton size is a constant, i.e., |L| = L = O(1). In this case, we have

λmin(S
⊤
LSL)∥βL∥2 ≤ ∥SLβL∥2

Using ∥βL∥2 ≥ Lρ2, the probability can be bounded as

Pr

(∥g∥2
P2
≤ 2γν2

)
≤ Pr

(
λmin

(
1

P2
S⊤
LSL

)
≤ 2γν2

Lρ2

)

On the other hand, using Lemma B.12 with the selection β = 1/2 and η = 1
1+2L (

1
2 −

2γν2

Lρ2 ), we have

Pr

(∥g∥2
P2
≤ 2γν2

)
≤ 2L2e

− P2
2(1+2L)2

(
1
2−

2γν2

Lρ2

)2

.

which holds as long as γ < Lρ2/(4ν2) = Lη
4 SNR.

• The multiton size grows asymptotically with respect to K, i.e., |L| = L = ω(1). As a result, the vector of random
variables g = SLβL becomes asymptotically Gaussian due to the central limit theorem with zero mean and a covariance

E[ggH] =
1

2
Lρ2I

Therefore, by Lemma B.11, we have

Pr

(∥g∥2
P2
≤ 2γν2

)
≤ e

−P2
2

(
1− γν2

Lρ2

)

which holds as long as γ < Lρ2/ν2 = LηSNR.

By combining the results from both cases, there exists some absolute constant ϵ > 0 such that

Pr

(∥g∥2
P2
≤ 2γν2

)
≤ K2e

−ϵ
(
1− 4γν2

ρ2

)2
P2

as long as γ < ρ2/(4ν2) = η
4SNR.
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Proposition B.9 (Missed Verification Rate). For 0 < γ < η
2SNR, the missed verification rate for each bin hypothesis

satisfies

Pr(HZ ← HS(r, F [r])) ≤ e
−P2

4
(ρ2/ν2−γ)2

1+2ρ2/ν2

Pr(HM ← HS(r, F [r])) ≤ e−
P2
4 (

√
1+2γ−1)2 + 2e−

ρ2

2ν2 P2 + 2Pr(r̂ ̸= r)

where P2 is the number of the random offsets.

Proof. The probability of detecting a singleton as a zeroton can be upper bounded by the probability of a singleton passing
the zeroton verification. Hence, by noting that W ∼ N (0, ν2I) and applying Lemma B.11,

Pr(HZ ← HS(r, F [r]))

≤ Pr

(
1

P2
∥F [r]sr +W∥2 ≤ (1 + γ)ν2

)

≤ e
−P2

4
(ρ2/ν2−γ)2

1+2ρ2/ν2 .

which holds as long as γ < ρ2/ν2 = ηSNR.

On the other hand, the probability of detecting a singleton as a multiton can be written as the probability of failing the
singleton verification step for some index-value pair (r̂, F̂ [r̂]). Hence, we can write

Pr(HM ← HS(r, F [r])) = Pr

(
1

P2

∥∥∥U− F̂ [r̂]sk̂

∥∥∥
2

≥ (1 + γ)ν2
)

≤ Pr

(
1

P2

∥∥∥U− F̂ [r̂]sk̂

∥∥∥
2

≥ (1 + γ)ν2
∣∣∣∣F̂ [r̂] = F [r] ∧ r̂ = r

)
+ Pr(F̂ [r̂] ̸= F [r] ∨ r̂ ̸= r).

Then, using Lemma B.11, the first term is upper-bounded as

Pr

(
1

P2

∥∥∥U− F̂ [r̂]sk̂

∥∥∥
2

≥ (1 + γ)ν2
∣∣∣∣F̂ [r̂] = F [r] ∧ r̂ = r

)
≤ Pr

( 1

P2
∥W∥2 ≥ (1 + γ)ν2

)

≤ e−
P2
4 (

√
1+2γ−1)2 .

On the other hand, the second term can be bounded as

Pr(F̂ [r̂] ̸= F [r] ∨ r̂ ̸= r) ≤ Pr(F̂ [r̂] ̸= F [r]) + Pr(r̂ ̸= r)

= Pr(F̂ [r̂] ̸= F [r]|r̂ ̸= r)Pr(r̂ ̸= r)

+ Pr(F̂ [r̂] ̸= F [r]|r̂ = r)Pr(r̂ = r)

+ Pr(r̂ ̸= r)

≤ Pr(F̂ [r̂] ̸= F [r]|r̂ = r) + 2Pr(r̂ ̸= r)

The first term is the error probability of a BPSK signal with amplitude ρ, and it can be bounded as

Pr(F̂ [r̂] ̸= F [r]|r̂ = r) ≤ 2e−
ρ2

2ν2 P2

Proposition B.10 (Crossed Verification Rate). For 0 < γ < η
2SNR, the crossed verification rate for each bin hypothesis

satisfies

Pr(HS(r̂, F̂ [r̂])← HS(r, F [r])) ≤ e−
P2γ2

4(1+4γ) +Ke
−ϵ

(
1− 4γν2

ρ2

)2
P2 +K2e

−ϵ
(
1− 4γν2

ρ2

)2
P 2

2 /t.

where P2 is the number of the random offsets.
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Proof. This error event can only occur if a singleton with index-value pair (r, F [r]) passes the singleton verification step for
some index-value pair (r̂, F̂ [r̂]) such that r ̸= r̂. Hence,

Pr(HS(r̂, F̂ [r̂])← HS(r, F [r]))

≤ Pr

(
1

P2
∥F [r]sr − F̂ [r̂]sr̂ +W∥2 ≤ (1 + γ)ν2

)

= Pr

(
1

P2
∥Sβ +W∥2 ≤ (1 + γ)ν2

)

= Pr

(
1

P2
∥Sβ +W∥2 ≤ (1 + γ)ν2

∣∣∣∣∥Sβ∥2 ≥ 2γν2
)

+ Pr
(
∥Sβ∥2 ≤ 2γν2

)

where β is a 2-sparse vector with non-zero entries from {ρ,−ρ}. Using Lemma B.11, the first term is upper-bounded as

Pr

(
1

P2
∥Sβ +W∥2 ≤ (1 + γ)ν2

∣∣∣∣∥Sβ∥2 ≥ 2γν2
)
≤ e−

P2γ2

4(1+4γ) .

By Lemma B.12, the second term is upper bounded as

Pr
(
∥Sβ∥2 ≤ 2γν2

)
≤ 8e

−P2
50

(
1
2−

γν2

Lρ2

)2

which holds as long as γ < ρ2/(2ν2) = η
2SNR.

Lemma B.11 (Non-central Tail Bounds (Lemma 11 in (Li et al., 2014))). Given any g ∈ RP and a Gaussian vector
v ∼ N (0, ν2I), the following tail bounds hold:

Pr

(
1

P
∥g + v∥2 ≥ τ1

)
≤ e−

P
4 (
√

2τ1/ν2−1−√
1+2θ0)

2

Pr

(
1

P
∥g + v∥2 ≤ τ2

)
≤ e−

P
4

(1+θ0−τ2/ν2)
2

1+2θ0

for any τ1 and τ2 that satisfy τ1 ≥ ν2(1 + θ0) ≥ τ2 where

θ0 :=
∥g∥2
Pν2

is the normalized non-centrality parameter.

Lemma B.12. Suppose β = Θ(1), η = Ω(1), and t = Θ(nα) for some α ∈ (0, 1/2). Then, there exists some n0 such that
for all n ≥ n0, we have

Pr

(
λmin

(
1

P2
S⊤
LSL

)
≤ 2β(1− β)− (2L+ 1)η

)
≤ 2L2 exp

(
−η2

2
P2

)
.

Proof. For any r sampled uniformly from vectors up to degree t, the probability that it will have degree 0 ≤ k ≤ t can be
written as

Pr (|r| = k) =

(
n
k

)
∑t

k=1

(
n
k

)

24



Identifying Interactions via the Mobius Transform

We know that the entries of sr are given as (s1r)i = 1
{
r ≤ d̄1

i

}
and (s2r)i = 1

{
r ≤ d̄2

i

}
. Therefore,

Pr
(
(s1r)i = 1

)
= Pr

(
d1ij = 0,∀j ∈ supp(r)

)

=

t∑

k=1

Pr
(
d1ij = 0,∀j ∈ supp(r)||r| = k

)
Pr (|r| = k)

=

∑t
k=1

(
n
k

)
βk/t

∑t
k=1

(
n
k

) .

=: g(t, n)

With β = Θ(1) and t = Θ(nα) for α ∈ (0, 1/2), we can show that limn→∞ g(t, n) = β. Therefore, there exists some n0

such that |Pr
(
(s1r)i = 1

)
−β| ≤ η for all n ≥ n0. For the rest of the proof, let g = Pr

(
(s1r)i = 1

)
and assume |g−β| ≤ η.

Then, recalling (sr)i = (s1r)i − (s2r)i, the distribution for each entry of sr can be written as

Pr ((sr)i = 1) = Pr ((sr)i = −1) = g(1− g).

Hence, using Hoeffding’s inequality, we obtain

Pr

(
1

P2
s⊤r sr ≤ 2β(1− β)− η

)
≤ Pr

(
1

P2
s⊤r sr ≤ 2g(1− g)− η

)
≤ exp

(
−η2

2
P2

)
.

Furthermore, the conditional probability of another vector m ̸= r being included in test i is given by

Pr
(
(s1m)i = 1|(s1r)i = 1, |r| = k

)
= Pr (dij = 0,∀j ∈ supp(m) \ supp(r)||r| = k)

=

t∑

ℓ=0

(
β1/t

)ℓ(
1− k

n

)ℓ(
k

n

)t−ℓ

=

(
k

n
+

(
1− k

n

)
β1/t

)t

=: f(t, n, k).

With β = Θ(1) and t = Θ(nα) for α ∈ (0, 1), for any k ≤ t, we can show that limn→∞ f(t, n, k) = β. Therefore,
there exists some n0 such that |Pr

(
(s1m)i = 1|(s1r)i = 1

)
− β| ≤ η for all n ≥ n0. For the rest of the proof, let

f = Pr
(
(s1m)i = 1|(s1r)i = 1

)
and assume |f − β| ≤ η.

On the other hand,

Pr ((sm)i(sr)i = 1) = 2fg [1− g − (1− f)g]

Pr ((sm)i(sr)i = −1) = 2 [(1− f)g]
2

As a result, we have

E[(sm)i(sr)i] = 2g(f − g).

Since limn→∞ E[(sm)i(sr)i] = 0, there exists some n0 such that −η ≤ E[(sm)i(sr)i] ≤ η for all n ≥ n0. For the rest of
the proof assume −η ≤ E[(sm)i(sr)i] ≤ η. As a result, we can write

Pr

(
1

P2
|s⊤r sm| ≥ 2η

)
≤ Pr

(
|s⊤r sm − P2E[(sm)i(sr)i]| ≥ P2η

)
≤ exp

(
−η2

2
P2

)
.

By Gershgorin Circle Theorem, the minimum eigenvalue of 1
P2

S⊤
LSL is lower bounded as

λmin

(
1

P2
S⊤
LSL

)
≥ 1

P2
min
r∈L


|s⊤r sr| −

∑

m∈L
m̸=r

|s⊤r sm|


 .
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Lastly, we apply a union bound over all (r,m) pairs to obtain

Pr

(
λmin

(
1

P2
S⊤
LSL

)
≤ 2β(1− β)− (2L+ 1)η

)
≤ 2L2 exp

(
−η2

2
P2

)
.

C. Worst-Case Time Complexity
In this section, we discuss the computational complexity of Algorithm 1, which is broken down into the following parts:

Computing Samples Computing samples for one sapling matrix requires computing the row-span of Hc, which can be
computed in n2b operations. Then for each sample, we must take the bit-wise and with each row of the delay matrix, so the
total complexity is: Cn2bP .

Taking Small Mobius Transform Computing the Mobius transform for each of the CP subsampled functions is CPb2b.

Singleton Detection To detect each singleton requires computing y. This requires P divisions for each of the C2b bins,
for a total of CP2b operations.

Singleton Identification To identify each singleton requires different complexity for our different assumptions.

1. In the case of uniformly distributed interactions, singleton detection is O(1), since y = k∗ immediately, so doing this
for each singleton makes the total complexity CK.

2. In the noiseless low-degree case decoding k∗ from y is poly(n), so for each singleton the complexity is CK poly(n)

Message Passing In the worst case, we peel exactly one singleton per iteration, resulting in CK subtractions (the above
singleton identification bounds already take into account the need to re-do singelton identification).

Thus in the case of uniformly distributed and low-degree interactions respectively, the complexity is:

Uniform distributed noiseless time complexity = O(CPn2b + CPb2b + CK)

= O(CPnK)

= O(n2K).

Low-degree (noisy) time complexity = O(CPn2b + CPb2b + CK poly(n))

= O(CP poly(n)K)

= O(poly(n)K).

D. Additional Simulations
In this section, we present some additional simulations that did not fit in the body of the manuscript. Fig 9 and 10. Plot the
runtime of SMT vs. n under both of our assumptions. In both cases we observe excellent scaling with n. We note that our
low-degree setting has a higher fixed cost since we are using linear programming to solve our group testing problem and the
solver appears to have some non-trivial fixed time cost.

Fig. 11 plots the perfect reconstruction percentage against n and sample complexity. We also observe a phase transition,
however, the phase threshold appears very insensitive to n, as expected, since our sample complexity requirement is growing
like log(n), and we are already plotting on a log scale.
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Figure 9. Time complexity of SMT under Assumption 3.1. The
parameter K is fixed and we plot the runtime v.s. n. our al-
gorithm remains possible to run for n = 1000 where other
competitors fail.
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Figure 10. Time complexity of SMT under assumption 3.2. The
parameters K and t are fixed and we plot the runtime v.s. n.
Our theory says we have a poly(n) complexity. In practice, for
reasonable n our algorithm is running quickly.
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Figure 11. Perfect reconstruction percentage plotted against sample complexity and n under Assumption 3.2. Holding C = 3, we scale b
to increase the sample complexity. We observe that the number of samples required to achieve perfect reconstruction is scaling linearly is
very insensitive to n as predicted. We also include N = 2n on the bottom axis, which is the total number of interactions. In this regime
we do not appear to consistently maintain zero error. This could be due to the fact that the asymptotic behaviour of group testing might
not yet be fuly realized in the regime with n ≤ 1000.
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SMALL
REGIME

MOBIUS 13.5± 10.1 5.8± 5.9 9.9± 8.2
FOURIER (3.4± 3.9)× 105 2,231.2± 4,872.3 (3.2± 4.2)× 105

LARGE
REGIME

MOBIUS 13.3± 10.4 5.7± 3.9 10.8± 8.9
SAMPLES (1.8± 1.8)× 105 (1.7± 2.0)× 105 (1.9± 2.1)× 105

TIME (S) 0.72± 0.57 0.34± 0.27 0.63± 0.54
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Figure 12. (Left) In cases of perfect recovery, mean ± standard deviation of the sparsity and performance of SMT across the Arbitrary,
Paths, and Proxmity settings from (Leyton-Brown et al., 2000). The Mobius sparsity does not grow with the number of items. (Right)
Across 100 realizations of each setting, the number of realizations that are perfectly recoverable by the SMT algorithm for a given
number samples. On these three distributions, perfect recovery is not achievable in 106 samples on all realizations by the Sparse Mobius
Transform.

Finally, we discuss a few additional combinatorial auction settings in Fig. 12. In these settings SMT requires too many
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samples for accurate construction. The main reason is that in these settings, interactions between inputs are very correlated
and the distribution of the degrees is very strange, and difficult to uniformly hash accross the aliasing sets. The algorithm
and techniques used in SMT are a clear step forward in state of the art methods for computing interaction scores in many
ways, and many of our theoretical assumptions can be relaxed in practice. Some of our assumptions, however, cannot be
relaxed in practice. Many problems like these have correlated interactions and future iterations of this algorithm should try
to resolve these issues.

E. Group Testing
E.1. Group Testing Achievability Results From Literature

Theorem E.1 (Part of Theorem 4.1 and 4.2 in Aldridge et al. (2019)). Asymptotic Rate 1 Noiseless Group Testing: Consider
a noiseless group testing problem with t = Θ(nθ) defects out of n elements. We define the rate of a group testing procedure
as:

R :=
log
(
n
t

)

T
(62)

where T is the number of tests performed by the group testing procedure. For an i.i.d. Bernoulli design matrix, for
θ ∈ [0, 1/3], in the limit as n→∞, a rate R∗

BERN = 1 is achievable with vanishing error. Furthermore, for the constant
column-weight design matrix, for θ ∈ [0, 0.409] a rate R∗

CCW = 1 is achievable with vanishing error.

Theorem E.2 (Bay et al. (2022)). Noiseless Group Testing: Consider the noiseless non-adaptive group testing setup
with t = |k| defects out of n items, with t scaling arbitrarily in n. Let k̂ be the output of a group testing decoder and let
T ∗ = Θ(min {t log(n), n}). Then there exists a strategy using T ≤ (1 + ϵ)T ∗ such that in the limit as n→∞ we have:

Pr
(
k̂ ̸= k

)
→ 0. (63)

Furthermore, there is a poly(n) algorithm for computing k̂.

Theorem E.3 ((Scarlett & Johnson, 2020)). Noisy Group Testing Under General Binary Noise: Consider the general
binary noisy group testing setup with crossover probabilities p10 and p01. We use i.i.d Bernoulli testing with parameter
ν > 0. There are a total of |k| = t = Θ(nθ) defects, where θ ∈ (0, 1). Let T ∗ = max

{
T

(D)
1 , T

(ND)
1 , T

(D)
2 , T

(ND)
2

}
,

where we have

T
(D)
1 =

1

νp10D(α/p10)
t log(t), (64)

T
(ND)
1 =

1

νwD(α/w)
t log(n), (65)

T
(D)
2 =

1

νe−ν(1− p10)D(β/p10)
t log(t), (66)

T
(ND)
2 =

1

νp01D(β/p01)
t log(n). (67)

where D(x) = x log(x)− x+ 1, and w = (1− p01)e
−ν + p10(1− e−ν). For any α ∈ (p10, 1− p01), β ∈ (p01, 1− p10),

there exist some number of tests T < (1 + ϵ)T ∗ where the Noisy DD algorithm produces k̂ such that in the limit as n→∞
we have:

Pr
(
k̂ ̸= k

)
→ 0. (68)

E.2. Group Testing Implementation

We implement group testing via linear programming. As noted in (Aldridge et al., 2019), linear programming generally
outperforms most other group testing algorithms in both the noisy and noiseless case. We use the following linear program,
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to implement group testing.

min
k,ξ

n∑

i=1

ki + λ

P∑

p=1

ξj

s.t. ki ≥ 0

ξp ≥ 0

ξp ≤ 1 p s.t. yp = 1

dT
pk = ξp p s.t. yp = 0

dT
pk+ ξp ≥ 1 p s.t. yp = 1

(69)
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