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Abstract—In this review we compare two common methods
for playing repeated games: Fictitious Play (FP) and Smooth (or
Stochastic) Fictitious Play (sFP). We formulate both techniques
theoretically and describe how FP can be considered as a limit
of sFP. We then study their convergence in two-player zero-
sum games by both surveying the literature on the theoretical
guarantees of convergence, and investigating the convergence
via simulation. In particular we use simulations to exhibit the
difference between convergence in belief (for FP and sFP) and
convergence in behaviour (for sFP but not FP). We discuss
how this lack of convergence of FP is due to the play of pure
strategies. We also discuss convergence of these techniques in
more general bimatrix games, where there exist cases where
they do not converge. We consider a simple 2 × 2 coordination
game, where although FP and sFP both converge, sFP favours
the pure strategy equilibria, and FP converges to the mixed
equilibrium in belief, but fails to converge to the value of the
game when the mixed NE is played. We also consider the example
of Shapley’s game and see that there are initial conditions where
neither FP nor sFP converge in any sense. We investigate how
the temperature parameter can be adjusted to prevent sFP from
falling into a cycle in Shapley’s game.

I. INTRODUCTION

Fictitious Play (FP) was first introduced by by Brown [1],
where he conjectured that such a scheme could be used to
calculate the value of a zero-sum game. FP can be viewed
as both a numerical technique for computing an equilibrium
state of a game, or as a strategy for playing a game. In
either case, the key advantage of FP is that it allows one to
completely uncouple the dynamics of a game with only partial
information about the behaviour of opponents. Only opponent
actions are made public, while in comparison, a technique
such as Best Response Play (BRP) requires full knowledge of
opponent’s mixed strategy. Due to this difference in accessible
information, BRP is often referred to as a full information
scheme, while FP is known as a partial information scheme.

Ever since Brown’s initial work, there has been significant
effort to prove that FP converges in a variety of games. There
are different notions of convergence, for example, convergence
in payoff (or convergence in value), convergence in belief,
in which the long run empirical distribution of player action
converges to a Nash equilibrium, or convergence in behaviour.
As we will see, in some cases, one of these can imply the other,
but it is not always the case. There are a variety of convergence
results for fictitious play, including for two-player zero-sum

games [2], 2 × 2 games [3], potential games [4], and games
with an interior evolutionary stable state (ESS) [5].

However, FP is not above criticism, and its origins as a
heuristic from the very early days of Game Theory means that
there is room for refinement. This is precisely what happened
when Fudenberg and Kreps [6] first introduced their notion of
smooth or stochastic Fictitious Play (sFP). The core idea of
sFP aims to address one of the key issues with FP: the fact that
each agent always plays a pure strategy. Fudenberg and Kreps
argue that the notion of convergence of an empirical average of
pure strategies to a mixed strategy is not appropriate, since it
does not capture the random nature in which mixed strategies
are played. Instead, they return to the formulation of BRP,
and consider a mixed strategy chosen from the perturbed best-
response of an empirical average of opponent actions. Since
their initial formulation, many convergence results have been
established, primarily through the connection with stochastic
approximation, and modelling the dynamics using ODEs.

In the following sections we formulate FP and sFP. Then we
review results on convergence for various types of games, and
present simulations of cases where the two schemes converge
or fail to converge, allowing us to compare these results to
theoretical expectations.

1) Notation: Throughout this paper, boldface upper and
lower case symbols such as A,v denote a matrix and a vector.
aij denotes the element in ith row and jth column of A.
Let Ui (a) denote the utility function (i.e payoff) of player i
(sometimes denoted Pi) given pure strategy a ∈Mi is played.
Let xi ∈ ∆i denote a mixed strategy of Pi belonging to the
simplex ∆i, and let x−i ∈ ∆−i denote the mixed strategy of
the players Pj j 6= i, while x ∈ ∆ is the mixed strategy of all
players.

II. FICTITIOUS PLAY

We being this section by defining fictitious play.

Definition 1. Fictitious Play is the scheme in which player Pi

plays a pure strategy eki in the kth round based on the best
pure response to the opponent empirical frequencies x̂k

−i:

eki ∈ arg max
j∈Mi

Ui
(
eij , x̂

k
−i
)
, k = 1, 2, . . . , (1)



and the full empirical frequency of all the players x̂k =
(x̂k

i , x̂
k
−i) is updated based on the actions of the players in

the kth round eki via:

x̂k+1
i =

k

k + 1
x̂k
i +

1

k + 1
eki ∀i, (2)

and x̂1
i may be chosen arbitrarily (i.e. the first play is random).

From the definition, we see that we can implement fictitious
play with only a limited amount of information. Each player
Pi requires:

1) Knowledge of Ui, the player’s own utility function.
2) The action of all the players each round ek.

A. Notions of Convergence

In each round, each player plays a pure strategy. Does this
meant that it is only possible for FP to converge to a pure NE?
In general, this is not true, and it is possible for FP to converge
to a mixed strategy NE if we use the following condition for
convergence.

We say FP converges to x∗ = (x∗i ,x
∗
−i) ∈ NE(G) of some

game G if and only if

lim
k→∞

x̂k = x∗. (3)

It should be noted. however, that the actual play in such a
convergent FP may look very different for the play when the
mixed NE is played, and there is no guarantee that the value
in both cases will be the same.

Thus, it sometimes makes sense to consider convergence in
value. That is, we have:

lim
k→∞

1

k

∑
k

Ui(eki ) = Ui(x∗i ) ∀i, x∗ ∈ NE(G). (4)

We will see that in some cases, both of these forms of
convergence are achieved in FP, while in others only one is,
and in others neither hold.

Before we move on with our discussion, we should note that
the FP of Definition 1 is somewhat different from the definition
laid out by Brown in [1]. In Brown’s original FP, players to not
update their empirical frequencies simultaneously each turn,
but instead in an alternating fashion. The convergence of this
type of FP has been investigated in [7], however, the vast
majority of literature on the topic uses our definition of FP
laid out above.

III. STOCHASTIC/SMOOTH FICTITIOUS PLAY

To address some of the issues of FP, Fundenberg introduced
the idea of sFP [6]. sFP is based around a perturbed BRP. A
key idea in the definition of sFP is the use of a perturbed best
response function, which is defined as follows:

B̃Ri(x̂−i) , arg max
xi∈∆i

Ũi (xi, x̂−i) , (5)

where:
Ũi (xi, x̂−i) = Ui (xi, x̂−i) + vi(xi). (6)

Where vi : int(∆i) 7→ R is a deterministic perturbation
penalty function. This function has the property that it is
smooth and positive definite such that Ũ is concave, with a
unique global maximum. The most common example of such
a penalty function is the Gibbs Entropy:

vi(xi) = ε
∑
j

xij log xij . (7)

In this case, the best response function that results is:

[
B̃Ri(x̂)

]
j

=
exp

(
1
εU (eij , x̂−i)

)∑
j′ exp

(
1
εU (eij′ , x̂−i)

) , (8)

which is the well known logit function. The main purpose of
this perturbation is to turn the set valued map BR(x̂) into an
argmax of a concave function, which is much more tractable.
It should be noted that another common formulation of sFP
is via a stochastic perturbation. For example, instead of a
deterministic perturbation to the utility function, we define:

Ũi (eij , x̂−i) = Ui (eij , x̂−i) + εij . (9)

Then, our perturbed best response becomes:

[
B̃Ri(x̂)

]
j

= Pr
(
j = arg max

j
Ui(eij , x̂−i)

)
(10)

Though this formulation seems quite different from that of
(6), [8] showed that the perturbed best response of any stochas-
tic perturbation εij , can be written in the form (6). It should
be noted, however, that the converse does not hold. In fact, in
a discrete action scenario, if the number of actions n > 4, it
can be shows that there exists no stochastic perturbation which
is best-response-equivalent to a Gibbs Entropy deterministic
perturbation (Proposition 2.2 of [8]).

Now that we have defined the perturbed best response
function, we can define sFP.

Definition 2. Smooth or Stochastic Fictitious Play is the
scheme in which player Pi plays a mixed strategy xk

i in the kth

round based on the best response to the opponent empirical
frequencies x̂k

−i, where:

xk
i = B̃R(x̂k

−i) k = 1, 2, . . . , (11)

and the full empirical frequency of all the players x̂k =
(x̂k

i , x̂
k
−i) is updated based on the actions of the players in

the kth round ek via:

x̂k+1
i =

k

k + 1
x̂k
i +

1

k + 1
eki ∀i, (12)

and x̂1
i may be chosen arbitrarily (i.e. the first play is random).



A. Notion of Convergence

Since in sFP, agents play mixed strategies, there is a
natural way to define convergence to a pure or mixed strat-
egy. However, in sFP agents do not play the original game,
but rather a perturbed version G̃. We say sFP converges to
x̃∗ = (x̃∗i , x̃

∗
−i) ∈ NE(G̃) if and only if:

lim
k→∞

x̂k = x̃∗. (13)

A significant advantage of sFP is that, under mild condi-
tions, if the above type of convergence is satisfied, sFP also
converges to NE in behaviour.

B. Example

In this section, we will see how perturbing an agent’s
utility function Ui with a Gibbs Entropy term impacts the
best response map. Consider a two player matrix game with
payoffs:

U1 =

[
−10 2

1 −1

]
,U2 =

[
5 −2
−1 1

]
, (14)

for players P1 and P2. For such a simple game, we can directly
show that there exists only one NE:

(x∗,y∗) =

(
1

9

[
2
7

]
,

1

14

[
3
11

])
≈
([

0.222
0.778

]
,

1

14

[
0.214
0.786

])
(15)

As can be surmised from Figure 1, the perturbed best
response functions intersect at a different point from the un-
perturbed ones, and thus admit a slightly different equilibrium,
which we can refer to as the perturbed equilibrium:

(x̃∗, ỹ∗) ≈
([

0.1674
0.8326

]
,

[
0.2716
0.7284

])
(16)

.
As the temperature factor ε → 0, the perturbed NE

(x̃∗, ỹ∗) → (x∗,y∗), and the sFP algorithm itself converges
to FP. This happens because as ε → 0, the perturbation term
goes to zero. This is consistent with our earlier definition of the
perturbed best response, because if we examine the limiting
behaviour of (8) we have:[

B̃Ri(x̂)
]
j

=

exp
(

1
εU (eij , x̂−i)

)∑
j′ exp

(
1
εU (eij′ , x̂−i)

) → I
(
j = arg max

j
Ui(eij , x̂−i)

)
,

(17)

which is exactly the unperturbed best response.
This example, though simple, already shows why sFP is

in some senses easier to analyze than FP. Since we are
considering the perturbed game, best response maps become
single-valued (i.e. functions). This is a significant advantage,
because we can consider the dynamics of the mean differential
equations of sFP to derive convergence results. Indeed, this is
how most convergence results for sFP have been derived. In
the case of FP. these differential equations become differential
inclusions, and are much harder to analyze. Nevertheless,

Fig. 1. Comparison of the many-valued best response map and the perturbed
best response function. The perturbed curves intersect at a point which is
distinct from the unperturbed case. As the temperature parameter ε→ 0, the
perturbed curve approaches the unperturbed one.

many of the classic results of FP have been re-derived via
a stochastic approximation analysis of these differential inclu-
sions.

IV. REPEATED TWO-PLAYER ZERO-SUM GAMES

Repeated two-player zero-sum games are an important class
of games for which convergence results exist for both FP and
sFP. Though the algorithms are related, as we will see, the
proofs themselves are completely different, and separated by
half a century.

A. Convergence of FP

Finite-action two-player zero-sum games can be played in
a decoupled manner via FP. These types of games are among
the simplest for analysis, and are a natural place to begin our
study. In this section, we will examine FP and its convergence
in two-player zero sum games. Specifically, we are interested
in whether or not the game will converge to a NE solution.
Our first study will begin by looking at the very first proof of
convergence of FP, presented by Julia Robinson in 1950.

1) Robinson’s Proof of Convergence: Robinson’s proof of
convergence relies on four key lemmas, and establishes a
convergence in value. We will state her fundamental result.

Theorem 1. Let x̂k and ŷk be the empirical frequency of
actions for the two agents based on fictitious play. We have
that:

lim
n→∞

min(x̂k)TU = lim
k→∞

maxUŷk = v, (18)

where v is the value of the game defined to be:

min
j

∑
i

uijx
∗
i = max

i

∑
j

uijy
∗
j , (19)

with some (x∗,y∗) ∈ ∆.



It should be noted that this theorem establishes two im-
portant things. Firstly, the payoff in FP does converge in a
two-player zero-sum game, and secondly, it converges to a
min-max solution of the game in value.

Theorem 2. If agents use FP in a two-player zero-sum game,
the empirical frequency of actions x̂k converges to a NE, i.e

lim
k→∞

x̂k = x∗. (20)

Proof. By Theorem 1, we know that:

lim
k→∞

maxUŷk = lim
k→∞

min(x̂k)TU (21)

Additionally, we must have

maxUŷk ≥ (x̂)kUŷk (22)

which must also hold under the limit as k → ∞. If
we subtract the limit of (22) from (21), and note that
limk→∞min(x̂k)TU ≤ limk→∞(x̂k)TUy′ ∀y′ ∈ ∆y:

lim
k→∞

(x̂)kUŷk ≤ lim
k→∞

(x̂k)TUy′ ∀y′ ∈ ∆y. (23)

Similarly, we can obtain:

lim
k→∞

(x̂)kUŷk ≥ lim
k→∞

(x′)TUŷk ∀x′ ∈ ∆x. (24)

Thus we can conclude, that in two-player zero-sum games, the
empirical frequency estimates converge to a NE.

A new common form of analysis which is routed in stochas-
tic approximation looks at the mean dynamics of FP which
results in a differential inclusion:

˙̂xi ∈ BR(x̂i)− x̂i. (25)

From this, we can also see that the rest points of FP must
be NEs.

B. Convergence of sFP

The convergence of sFP in two-player zero sum games was
established in [8]. The proof relies on several key theorems.
We will summarize the results after a few preliminary defini-
tions. We define individual user payoff vector and the noise
vector as:

π(m) =

[π
(m)
1 , . . . , πm

n ]T = [Um(emn, x̂−i), . . . ,Um(em1, x̂−i)]
T
,

(26)

ε(m) = [ε
(m)
1 , . . . , ε(m)

n ]T . (27)

In the stochastic formulation of sFP, we define the choice
probability function:

C
(m)
i (π) = Pr

(
arg max

j
π

(m)
j + ε

(m)
j = i

)
. (28)

Ci can be interpreted as the probability of agent m choosing
action i. in this case, m = 1, 2. Theorem 2.1 of [8] establishes
that any stochastic perturbation in which fε(ε) has positive

density on Rn and results in a continuously differentiable C
can be replaced with a deterministic perturbation, which allows
the choice function to be written deterministically as:

C(m)(π(m)) = arg max
x∈int(∆(m))

(xTπ(m) − V (x)). (29)

Proposition 3.1 of [8] states that if for each agent, the
distribution of the noise vector ε converges to a point mass
(in distribution) as k → ∞ then a rest point of the perterbed
best-response dynamics converges to the NE of the game.

The final step examines the best-response dynamic:

˙̂xi′ = B̃R(x̂i′)− x̂i′ . (30)

We can use Theorem 2.1 to show that the best response dy-
namic can be written deteministically. Finally it can be shown
that for two-player zero-sum games, a Lyaponov function
exists for this dynamic, which establishes convergence. See
[8] for details on the particular Lyaponov function.

C. Simulation

We simulated the repeated play of a two-player zero-sum
game, where the utility of P1 is given by:

U1 =

[
−1 3
3 −2

]
= −U2, (31)

which only has one NE:

(x∗,y∗) =

(
1

9

[
0.2
0.8

]
,

1

14

[
0.2
0.8

])
. (32)

Our main goal is to numerically investigate the convergence
properties of FP and sFP. We use the standard FP algorithm,
and a fixed Gibbs Entropy deterministic perturbation for sFP.
Since we are using a fixed perturbation, we only expect
convergence to an NE of the perturbed game. In Figure 2,
we can see that as expected based on theory, both FP and sFP
(ε = 0.05) converge to the NE of the game and the perturbed
game respectively. Notably sFP converges more rapidly, and
with significantly fewer sharp oscillations. Though sFP does
converge more quickly, it should be noted that it converges
to a perturbed equilibrium, which differs slightly from the
unperturbed equilibrium.

In Figure 3, the importance of the temperature factor is
further investigated. Specifically, we see that the first element
of the perturbed NE x̃∗ is increasing with the temperature
parameter. As the temperature parameter goes to zero, we see
that the behaviour of sFP begins to look very similar to that
of FP, which is also in line with our expectations.

Though the empirical frequency of play has converged to
that of the NE, the actual dynamics of the payoff under FP
and sFP are quite different from the dynamics of playing
the mixed strategy NE. Figure 4 shows that in all cases, the
global average of all forms of play do converge to the value
of the game: −2.2, as expected based on theory. If we look
at the local properties of the payoff, however, we see that
they vary significantly. In particular, the local average payoff
of FP can oscillate wildly. This is because in FP, an agent



Fig. 2. Convergence of a 2× 2 two-player zero-sum game. FP converges to
the NE but has sharp oscillations. sFP converges more rapidly, and in a much
smoother fashion, but converges to the perturbed NE which is close to the
NE for the chosen temperature parameter.

Fig. 3. Convergence of a two-player zero-sum under sFP to various perturbed
equilibria. Note that as the temperature parameter goes to zero, the equilibrium
approaches the NE of the unperturbed game, but the empirical frequency starts
to oscillate more rapidly.

can play the same pure strategy may times consecutively if
the empirical average indicates that it should. Eventually, the
empirical average adjusts, and the player changes its action.
In sFP, even if the empirical average is biased slightly away
from the NE, the agent still plays a mixed strategy which is
close to that of the perturbed NE. This is why we find that
the local average payoff of sFP much more closely resembles
the behaviour of the NE play.

Figure 4 is an excellent depiction of one of the reasons
why sFP was first formulated. One of the key motivations of
[6], in which sFP was first proposed, is that the convergence
of an empirical average to a mixed strategy, the predominant
notion of convergence of FP, is flawed, because the agent
makes deterministic plays in every round. Small changes in

Fig. 4. The figure depicts the average payoff from the 100 closest games
for the game (31) played via FP, sFP, and via the true mixed NE strategy.
Note that average payoff in FP oscillates wildly, while the sFP more closely
emulates the play of the mixed NE.

Fig. 5. The figure depicts the average cumulative payoff after k games for
the game (31) played via FP, sFP, and via the true mixed NE strategy. Note
that all three converge to the value of the mixed NE at −2.2.

the empirical average can have sharp (discontinuous) changes
in the chosen action. In sFP, small oscillations in the empirical
average smoothly change the mixed strategy played by sFP,
and since in sFP the agent plays a mixed strategy convergence
to a mixed strategy can be naturally defined.

In this case, of the game we have considered in this section,
though the payoff locally oscillates, the cumulative average
payoff still converges to the value of the game, as depicted in
Figure 5. As we will see, this is not something that can be
taken for grated. In general bimatrix games there are examples
where where FP can converge to an NE belief while the payoff
is much worse than if the NE was played.



V. REPEATED BIMATRIX GAMES

Repeated bimatrix games are a more general class of games,
and we can find examples of games where FP converges, and
where it doesn’t. In this section, we will review some of these
results.

A. Convergence of FP in Repeated Bimatrix Games

Convergence of FP has been established for several variants
of bimatrix games. Following Robinson’s proof of convergence
for two-player zero-sum games, Miyasawa [3] proved that
in any 2 × 2 game, the empirical frequency converges to
an NE. Monderer and Shapley [4] also proved the same for
any bimatrix game of identical interests. Interestingly, it can
be shows that Monderer’s result and Robinson’s result imply
Miyasawa’s result, since any nondegenerate 2×2 game can be
shown to be “best response equivalent” to either a zero-sum
game, or a game of identical interest.

It is important to note that in general, even if the empirical
frequencies converge to the NE, the actual play may look
quite different from play using an NE strategy. We will see
an example in which the average payoff of FP is significantly
lower than with NE play. Furthermore, we will see examples
of 3× 3 bimatrix games where FP fails to converge at all for
certain initial conditions [9].

B. Convergence of sFP in Repeated Bimatrix Games

Convergence of sFP has been established for 2 × 2 games
through [6], which first showed that it converges almost surely
in a game with a unique mixed NE. This work was generalized
by Kaniovski [10], and by Benaim [11], to any 2×2 game with
countably many NEs. These works established convergence
not only in the empirical frequency of actions, but also in
behaviour. Essentially, what this means is that sFP converges
to an NE such that one cannot distinguish between the play of
the NE directly, and the sFP. Their proofs employed elements
of stochastic approximation, but do not explicitly employ
the connection between the connection between the mean
differential equation of sFP and the convergence of sFP.

Hofbauer and Sandholm [8], by explicitly forming this
connection established that sFP also converges in two-player
zero-sum games, potential games, and several others.

C. FP vs. sFP in Coordination Game

Consider the following simple 2 × 2 coordination game,
where both player have the identical payoff matrix:

U =

[
1 0
0 1

]
. (33)

Figure 6 shows 4 convergent paths of FP for distinct initial
conditions. This game has three distinct NEs:

(x∗1,y
∗
1) =

([
1
0

]
,

[
1
0

])
, (x∗2,y

∗
2) =

([
0
1

]
,

[
0
1

])
(x∗3,y

∗
3) =

([
0.5
0.5

]
,

[
0.5
0.5

])
. (34)

Fig. 6. Sample paths of convergence for the simple coordination game with
various initial conditions.

Fig. 7. Sample paths of convergence for the simple coordination game under
sFP with various initial conditions. All the paths eventually diverge from the
mixed equilibrium in favour of one of the two pure equlibria.

FP is capable of converging to all three, as we can see from
the figure. However, for the case in which FP converge to
the mixed NE, the payoff in each round is 0, as compared to
the average payoff of the NE play which is 0.5. Thus in this
coordination game, we can see that FP coordinates to achieve
the worst possible payoff.

Our experiments found that in this game, 1000 trials of sFP
ε = 0.005 did not converge to the mixed NE. We can see the
trials of these runs in Figure 7. This tells us that it is likely
that the mixed NE is unstable under sFP.

D. Nonconvergent 3× 3 Games

In all the examples we have considered, sFP and FP have
converged. 2 × 2 games have guarantees of convergence, but
we only need to extend our consideration to 3×3 games before



Fig. 8. sFP and FP failing to converge under certain initial conditions. The
agents cycle over a subset of the states, each time playing the same action
for a longer period of time before switching actions.

we begin find examples where FP and sFP do not converge.
Consider the 3× 3 game with the following payoffs:

U1 =

1 0 0
0 1 0
0 0 1

 ,U2 =

0 0 1
1 0 0
0 0

 . (35)

Shapley noted [9] that there is clearly an NE where both
players chose actions with equal probability. However, under
certain initial conditions, FP (and sFP) will fail to converge.
One of these initial conditions is x̂1 = [001]T , x̂2 = [010]T .
The trajectory of FP and sFP starting at these non-convergent
conditions are plotted in Figure 8. There are however, still
many initial conditions for which FP and sFP can be made to
converge to the mixed NE.

1) Perturbation and Convergence in Shapley’s Game: As
we have just discussed, FP and sFP do not converge in
Shapley’s game (35) for the the previously specified initial
condition. In this section, we attempt to make a contribution
by investigating whether or not Shapley’s game converges as
the temperature parameter increases when we use a determin-
istic Gibbs Entropy perturbation for sFP. The figures in the
appendix show the trajectory of the empirical average strategy
on the simplex. From the figures, we can see that for small
temperature parameters, sFP enters a limit cycle centred at the
NE (see Figure 9). As we increase the temperature parameter,
the limit cycle begins to orbit the NE more closely (see Figure
11). Eventually, as the temperature gets low enough, (see
Figure 12), sFP slowly spirals inward approaching the NE.
Finally, as the temperature parameter gets larger (see Figure
13), the solution rapidly approaches the NE.

These simulations show us that for large enough temperature
parameters sFP can converge in (35), even for the troublesome
initial condition.

VI. A STRONGLY UNSTABLE GAME

In the class of bimatrix we have only seen examples of
games which can fail to converge for certain initial conditions.
This is a fairly weak result on non-convergence, since it is still
possible that FP and sFP may converge for many different
initial conditions. Jordan [12] showed that there are repeated
games for which all NEs are locally unstable in the strong
sense. That is, for any ε > 0 and for almost all initial empirical
distributions that are within the euclidean ball of radius ε,
FP does not converge to an NE. The game which he showed
to exhibit this property is his three player matching pennies
game. In this game each player has an identical binary action
set {H,T}. P1 tries to match their action to P2’s action, P2

tried to match their action to P3’s action, and P3 tries to match
their action to the opposite of P1’s action. Later it was also
shown [11] that sFP exhibits this same property.

VII. SUMMARY AND CONCLUDING REMARKS

In this review, we have seen that FP and sFP “converge” in a
large class of games, including two player zero-sum games, 2×
2 games, games of identical interest, and others. We have noted
that convergence can sometimes be defined in a deceptive way.
In particular, even when FP converges to a mixed NE in belief,
the play of the game may look very different as compared to
the play of the mixed NE. We saw how sFP can mitigate these
issues by playing a mixed strategy in each round, and how it
can converge to become behaviourally like NE play over time.
We also saw how a simple cooperation game can exhibit many
of the properties of both FP and sFP, and again show how FP
can be behaviourally different when converging in belief to a
mixed NE.

Finally we considered Shapley’s game for which it is
possible for both FP and sFP to fall into a limit cycle and fail
to converge. We attempted to characterize the convergence of
sFP in this case, and examine how the limit cycle can begin to
break down with enough perturbation. Interestingly, we find
that with enough perturbation, a previously non-convergent
initial condition can exhibit rapid convergence. Further inves-
tigation will be need to characterize these dynamics.
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APPENDIX

Fig. 9. (35) played via sFP with parameter 0.004.

Fig. 10. (35) played via sFP with parameter 0.05.

Fig. 11. (35) played via sFP with parameter 0.15.

Fig. 12. (35) played via sFP with parameter 0.2.

Fig. 13. (35) played via sFP with parameter 0.25.


