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Abstract—In this review, we study the progression of
information-theoretic generalization bounds for Stochastic Gradi-
ent Langevin Dynamics (SGLD). SGLD is an important optimiza-
tion algorithm with many applications in statistical learning. We
discuss the formulation of SGLD and its applications. We review
the first information-theoretic generalization bounds by Russo et
al. and Xu et al. which apply to a more general class of learning
algorithms, as well as newer work by Bu et al. on this subject.
After surveying these fundamental works we conduct a review of
the more specific works by Pensia et al. which focus on the class
of iterative learning algorithms, of which SGLD is a part. We
also review the work Haghifam, Negrea et al., which presents
a new frontier in information theoretic bounds for SGLD by
formulating the data-dependant estimation framework. Finally,
we present a simple novel information-theoretic method to bound
the generalization error of a particular formulation of SGLD with
a square error loss function.

I. INTRODUCTION

In recent years, the development of statistical learning
algorithms has seen tremendous progress. The development of
these algorithms has coincided with the availability of large
amounts of data. This “big-data” contains information about
complex and important systems such as the internet, human
language and even biological systems. With such large data-
sets and powerful algorithms, important predictions can be
made about the systems from which the data is drawn. Let us
consider an algorithm which takes some data and produces a
model. A key open problem in statistical learning theory is
how to evaluate the efficacy of such a model on data which
was not used to generate the model. This is important, because
even if model predictions are consistent with the given data,
it is still possible that the predictions will be inaccurate when
compared against new data. When this occurs, we often say
that the algorithm has produced a model which suffers from
overfitting.

How a model performs on data outside of the input data
is often referred to as the generalization of that model. In
their book [1], Abu-Mostafa et al. state that the “holy grail”
of statistical learning is an in-sample estimate of the out-
of-sample error, i.e. the generalization error. This problem
is by no means new and many different methods have been
proposed for attempting to estimate generalization error over
the years. One of the first methods was the study of Vap-
nik–Chervonenkis dimension of learning algorithms. Though
the bounds associated with this analysis are useful, particular

with simple learning algorithms, there has recently been a
significant movement to find other ways to bound general-
ization error. In particular, information theory is a new tool
being used. In this review paper, we look at the development
of information theoretic generalization bounds for Stochastic
Gradient Langevin Dymanics (SGLD), which is a type of
learning algorithm. SGLD was first proposed in [2], as a
way to mix stochastic gradient decent methods with Bayesian
techniques. SGLD is described by an iterative process, with an
update equation characterized by both additive white Gaussian
noise and a decreasing step size ηt, as well as a term which
depends on the gradient:

wt+1 = wt − ηt∇wt
R(wt,Zt) +

√
2ηt
β
ξt. (1)

R is a risk function, wt is an element of our hypothesis space,
and Zt represents data which is considered in the tth time step.
This update function is given more context in the following
section. The conclusion of [2] is that in the initial phase
the stochastic gradient noise will dominate and the algorithm
effectively behaves like an efficient stochastic gradient descent
algorithm, while in the later phase the injected noise ξt will
dominate, so the algorithm will imitate a Langevin dynamics
algorithm with a smooth transition between the two.

Since it’s inception, SGLD has found practical application
in an extremely wide variety of optimization and learning
problems. For example [3] makes use of SGLD to study
antibiotic resistance in bacteria. These kinds of applications
in data analysis and predictive modeling makes the study of
SGLD an important topic for research.

1) Notation: Throughout this paper, boldface symbols such
as S denote sets. EX∼Λ[f(X)] denotes the expectation of
f(x) with respect to the argument X under the distribution
Λ. The absolute value function is denoted by | · |. P (X|Y )
is the conditional distribution of X given Y . I(X;Y ) is
the mutual information between random variables X and
Y . h(X) represents the entropy of a continuous random
variable X . Furthermore, we denote the KL-divergence as
KL(P //Q) =

∫
p(x) log

(
p(x)
q(x)

)
dx.

II. PROBLEM SETUP AND PRELIMINARIES

Consider an unknown underlying data distribution Λ. We
take n “measurements” Zi ∼ Λ from this distribution, which



together make up the training set S = {z1, . . . , zn}. Each
measurement zi belongs to an instance space denoted Z . The
goal of statistical learning, is to estimate this distribution Λ, or
some function thereof, using S. We parameterize the potential
candidate distributions by an element w ∈ W . This set is
referred to as the hypothesis space. Let `(w, z) be a loss
function. This loss function should in some sense represent
the “compatibility” of the input measurement with the chosen
distribution in the hypothesis set. The optimal w is chosen
such that in expectation, the loss function is minimized:

minimize
w ∈ W

EZ∼Λ [`(w,Z)] . (2)

The quantity EZ∼Λ [`(w,Z)] is often referred to as the out-of-
sample error, or sometimes as the risk. However, this quantity
is unknown to us as we attempt to select the parameter w.
Thus, a common framework for learning is known as empirical
risk minimization, where we seek to minimize:

LΛ(w) =
1

n

n∑
i=1

`(w, zi), (3)

which clearly approximates the out-of-sample error. A learn-
ing algorithm takes in some training set S and produces some
output hypothesis w ∈ W . In the empirical risk minimization
scheme, this output w is the minimizer of the empirical risk
in (3). We can view our learning algorithms as a channel,
which is characterized by a conditional distribution PW |S. In
this review, we will look primarily at SGLD, however, some
of the earliest results present bounds on a more general class
of learning algorithms. We will define the generalization error
as:

gen
(
Λ,PW |S

)
, ES,W [LΛ(w)− EZ [`(w,Z)]] . (4)

Another useful way to interpret the generalization error equa-
tion (4) is to consider it written the following way:

Eout = EZ [`(w,Z)] = ES,W [LΛ(w)]+gen
(
Λ,PW |S

)
. (5)

In this form, we have separated out the quantity we are truly
interested in, Eout. We can see that the out-of-sample error is
a function of both the in-sample error and the generalization
error term. Since, in general, both cannot be minimized
simultaneously, it is important to understand the relationship
between these two quantities.

Below we include some preliminary definitions required for
the remainder of the paper:

Definition 1. A random variable X is part of the set of sub-
Gaussian random variables with variance proxy σ2, i.e. X ∈
SubG(σ2) if the following inequality holds:

E[exp(λ(X − EX))] ≤ exp

(
λ2R2

2

)
, ∀λ ∈ R (6)

We will assume that `(w,Z) ∈ SubG(σ2) with respect to
Z ∼ Λ, for every w ∈ W . In particular, if Λ is Gaussian

and `(w,Z) is L-Lipschitz, then `(w,Z) is known to be sub-
Gaussian. Furthermore, if `(w,Z) is bounded, it is also sub-
Gaussian. Both of these results will be used in the papers we
review.

In this review we will primarily be interested in PW |S given
by the SGLD learning algorithm. In this algorithm, the output
WT is generated from the dataset S. by the following series
of T update equations:

wt+1 = wt −
ηt
n

n∑
i=1

∇wt
` (wt, zi) +

√
2ηt
β
ξt, (7)

where ξt ∼ N (0, 1).

III. GENERALIZATION BOUNDS FOR PROBABILISTIC
LEARNING ALGORITHMS

The work on information theoretic generalization bounds
began with [4], and was quickly followed by the work of Xu
et. al., from which the following bound was derived.

Theorem 1. [5] Suppose `(w,Z) ∈ SubG
(
σ2
)
, where Z ∼

Λ. Then for any learning algorithm PW |S, we have:

∣∣gen
(
Λ,PW |S

)∣∣ ≤√2σ2

n
I(W ;S). (8)

This was the first major result in information-theoretic
generalization bounds for learning algorithms. This work
was followed by proof of a tighter bound on generalization
presented in [6].

Theorem 2. [6] Suppose `(w,Z) ∈ SubG(σ2) under Z ∼ Λ
for all w ∈ W, then

| gen
(
µ,PW |S

)
| ≤ 1

n

n∑
i=1

√
2σ2I (W ;Zi)

≤
√

2σ2

n
I(W ;S). (9)

In Section V, we will use Theorem 2 to bound the gener-
alization error for a particular instance of SGLD.

IV. GENERALIZATION BOUNDS FOR ITERATIVE
ALGORITHMS

In this section, we review the contribution of [7], which
specifically focuses on the generalization of stochastic iterative
algorithms in the empirical risk minimization framework.
We formally define a class of algorithms, iterative learning
algorithms, for which their theory applies, below.

Definition 2. An iterative learning algorithm PW |S is defined
by T update equations which are given by:

Wt = g (Wt−1)− ηtF (Wt−1,Zt) + ξt ∀t ≥ 1. (10)

Let W0 ∈ W be any starting point and let WT be the final
output of the iterative learning algorithm. At each step, the
new Wt is chosen as some function of the previous end point,
plus some data-dependant direction vector (typically the risk
function gradient), which is scaled by ηt. Note that at each



step Zt ⊆ S. Finally the update is perturbed by noise ξt ∼
N
(
0, σ2

t Id
)
,.

Note that this definition of iterative algorithms implies that

P (Wt+1|W1, . . . ,Wt,Z1, . . . ,Zt+1,S) =

P (Wt+1|Wt,Zt+1) (11)

Our definition of SGLD as given in (1), is consistent with
this definition with the update function of g(Wt−1) = Wt−1

and F (Wt−1,Zt) = ∇Wt−1
R(Wt−1,Z). For data Zt, the

empirical risk function R is defined to be R(w,Zt) =
1
|Zt|

∑
z∈Zt

`(w, z). Since SGLD is of the form of the iterative

algorithms defined in this paper, their results can be applied
to SGLD.

Furthermore, throughout [7], the following assumptions are
made.

Assumption 1. The loss function satisfies:

`(w,Z) ∈ SubG
(
σ2
z

)
(12)

for Z ∼ Λ for all w ∈ W .

Assumption 2. The directional part of the update function, F
is bounded:

sup
w∈W,z∈Z

‖F (w, z)‖2 ≤ L, L > 0. (13)

Assumption 3. The sampling strategy is agnostic to the
previous iterates of the parameter vectors:

P (Zt+1|Z1, . . . ,Zt,W1, . . . ,Wt,S) =

P (Zt+1|Z1, . . . ,Zt,S) . (14)

Combining Assumption 3, with (11), we note that the
following condition holds:

P (Wt+1|W1, . . . ,Wt,Z1, . . . ,ZT ,S) =

P (Wt+1|Wt,Zt+1) . (15)

Now that we have stated all of the assumptions used in [7],
we can state the main result.

Theorem 3. For an iterative algorithm PW |S which satisfies
Assumptions 1-3, the mutual information between the output
W and the input data S satisfies:

I(W ;S) ≤
T∑
t=1

d

2
log

(
1 +

η2
tL

2

dσ2
t

)
. (16)

In [7] a simple information theoretic proof is given, which
is summarized below:

Proof. We begin by using chain rule:

I(S;W ) ≤I (S;W1, . . . ,WT )

≤I (Z1, . . . ,Zt;W1, . . . ,WT )

=I (Z1, . . . ,ZT ;W1) + . . .

+ I (Z1, . . . ,ZT ;WT |W1, . . . ,WT−1)

(17)

Each of the individual terms in the final equation of (17) can
be computed based on the previously stated assumptions. This
is done by breaking up each term in the sum to be

I (Z1, . . . ,ZT ;Wt|W1, . . . ,Wt−1) = I(Wt;Zt|Wt−1)

= h (Wt|Wt−1)− h (Wt|Wt−1,Zt) . (18)

Both of the entropies in the above equation can be bounded
from the assumptions. The details of this are left in the
appendix of [7].

The implication of Theorem 3 in conjunction with Theorem
1 is that for an SGLD algorithm as defined in (1):

∣∣gen
(
Λ,PW |S

)∣∣ ≤
√√√√σ2

n

T∑
t=1

η2
tL

2

σ2
t

. (19)

Furthermore, Theorem 3 from [5] leads to a probabilistic
generalization bound, which we state in the following theorem.

Theorem 4. Let I(S;W ) ≤ ε =
∑T
t=1

d
2 log

(
1 + η2L2

dσ2
t

)
.

For any α > 0 and 0 < β ≤ 1, if we have:

n >
sR2

α2(
ξ + log

(
2
β

)) (20)

P
(∣∣gen

(
Λ,PW |S

)∣∣ > α
)
≤ β (21)

As we stated earlier, since these results can be readily
applied to any iterative algorithm, they can be applied to
SGLD. In [7], this is exactly what is done.

It is established that for a given choice of β, α, taking:

n ≥ 64R4

a4

(
log

(
2

β

))2

, (22)

ensures that provided that (21) in satisfied, so long as a total
of K epochs are run, where K satisfies:

K ≤ 1

ne

(
22(
√
n−1)a

b−
n
2

)
. (23)

This is a valuable result because it takes the abstract
information-theoretic bounds, and provides real estimates for
the amount of data and computation required to meet a given
generalization error with high probability. However, as we will
see, the true utility of this is limited by the looseness of these
bounds.

V. GENERALIZATION BOUNDS FOR SGLD WITH SQUARE
ERROR LOSS FUNCTIONS

We will now use the results of Theorem 2 to prove a
generalization bound on a learned distribution using SGLD
with the square error loss function. Note that in the formulation
which we consider, in each step the entire dataset S is used.
In fact, our formulation hinges on this fact, exploiting the
linearity of the update function. In [8], this formulation is
referred to as Langevin Dynamics, since the gradient update
does not depend on a stochastic choice of batch.



Theorem 5. Let S = {z1, . . . , zn} ∼ Λn be a set of measure-
ments. Furthermore let Z ⊂ R, and let the set Z be bounded,
such that Zi ∈ SubG(σ2

z). We wish to estimate EZ∼Λ[Z]. The
loss function for this problem will be `(z, w) = (z − w)2.
Furthermore, we will assume that `(w,Z) ∈ SubG(σ2) for
all w ∈ W . To solve this problem, we use SGLD, with a total
of T iterations. The update function which we consider is:

wt+1 = wt −
ηt
n

n∑
i=1

∇wt` (wt, zi) +

√
2ηt
β
ξt, (24)

where ξt ∼ N (0, 1). Then the generalization error must
satisfy:

| gen(Λ,PW |S)| < σ

√√√√log

(
b2σ2

z

σ2
ξ

+ 1

)
. (25)

Where

σ2
ξ =

T∑
t=1

 T∏
t′=t+1

(1− 2ηt′ )

√
2ηt
β

2

, (26)

and,

b =

T∑
t=1

2ηt
n

T∏
t′=t+1

(1− 2ηt′ ) . (27)

Proof. From Theorem 2, we have that:

| gen
(
µ, PW |S

)
| ≤ 1

n

n∑
i=1

√
2σ2I (wT ; zi). (28)

To upper bound this equation, we must upper bound I(wT ; zi).
Since the measurements are independent, we can write:

I (wT ; zi) ≤ I (wT ; zi|z1, z2, . . . , zi−1, zi−1, . . . , zn) . (29)

We can write this in terms of entropy to be:

I (wT ; zi) ≤ h (wT |z1, z0, . . . , zi−1, zi+1, . . . , zn)

− h (wT |S) . (30)

The second term is going to be easier for us to evaluate.
Let us begin by re-writing the update function and grouping
terms:

wt+1 = wt +
2ηt
n

n∑
i=1

(zi − wt) +

√
2ηt
β
ξt

= (1− 2ηt)wt − 2ηt

(
1

n

n∑
i=1

zi

)
+

√
2ηt
β
ξt. (31)

If S is given, then the middle term in (31) is not random.
The key observation here is that because the update function
is linear in both wt and ξt, in fact, wT is a linear combination
of sub-Gaussian random variables, and thus is itself sub-
Gaussian. From this update function, we see that:

h(wT |S) = h


T∑
t=1

 T∏
t′=t+1

(1− 2ηt′ )

√2ηt
β︸ ︷︷ ︸

at

ξt

 . (32)

This is the entropy of a random variable which is distributed
like N

(
0, σ2

ξ =
∑T
t=1 a

2
t

)
. Thus, we find that:

h (wT |S) =
1

2
log
(
2πeσ2

ξ

)
. (33)

The first term in (30) is more complicated, because zi is
not known. Despite this, we can still bound this quantity by
making the same key observation as we just did before. wT
is a linear function of zi and ξt. From the update function we
can show that:

wT =

T∑
t=1

2ηt
n

T∏
t′=t+1

(1− 2ηt′ ) zi +

T∑
t=1

a2
t ξt (34)

Thus, we can bound the entropy in the first term:

h (wT |z1, z2, . . . , zi+1, zi+1, . . . , zn) =

h


T∑
t=1

2ηt
n

T∏
t′=t+1

(1− 2ηt′ )︸ ︷︷ ︸
b

zi +

T∑
t=1

atεt

 . (35)

Since bzi ∈ subG
(
b2σ2

z

)
we have the following bound:

h

(
bzi +

T∑
t=1

atξt

)
≤ 1

2
log

(
2πe

(
b2σ2

z +

T∑
t=1

a2
t

))
.

(36)
Putting these results together, we complete the proof:

I (wT ; zi) ≤
1

2
log

(
b2σ2

z∑
a2
t

+ 1

)
. (37)

For a learning rate of ηt = 1
t , we have:

b =
2

n

T∑
t=1

1

t

T∏
t′=t+1

(
1− 2

t′

)
. (38)

The term in the product can be simplified (for T > 1):

T∏
t′=t+1

(
1− 2

t′

)
=

t(t− 1)

T (T − 1)
. (39)

Thus,

b =
2

n

T∑
t=1

1

t

t(t− 1)

T (T − 1)
=

1

n
. (40)



Furthermore,

σ2
ξ =

2

β

T∑
t=1

(
t(t− 1)

T (T − 1)

)2
1

t

=
2

βT 2(T − 1)2

T∑
t=1

t(t− 1)2 =

(T + 1)(3T − 2)

β6T (T − 1)
. (41)

Thus, we can bound the generalization by:

| gen(Λ,PW |S)| < σ

√√√√log

(
b2σ2

z

σ2
ξ

+ 1

)
. (42)

Since log(x+ 1) < x ∀x > 0,

| gen(Λ,PW |S)| < bσσz
σξ

=
σσz

√
6βT (T − 1)

n
√

(T + 1)(3T − 2)
. (43)

VI. GENERALIZATION BOUNDS FOR SGLD USING DATA
DEPENDENT MEASUREMENTS

In this section, we review the contributions of [8]. This
work is motivated by the looseness of the bounds from [7].
The authors note that the bounds of Theorem 3 have several
shortcomings. In particular, it is established that the use of
Assumption 2 makes the bound of Theorem 3 ineffective in
practice, as most interesting modern problems would require
a prohibitively large Lipshitz constant L. The key contribution
of [8] is the understanding that many of the shortcoming of
Theorem 3 come from the fact that the bound is distribution
independent.

In [8], it is proposed that this shortcoming can be overcome
by the use of data-dependent estimates. The key idea is to split
the initial data S into two parts. These two parts are denoted
as SJ and ScJ which satisfy SJ ∪ ScJ = S. Let |S| = n
and |SJ | = m. One of these subsets can be used to make a
data-dependant prior, which is independent of the other subset.
Using this fact, the authors establish the following theorem.

Theorem 6. Let W ∈ W be a random element, let S ∼
Λn, and let J ⊆ [n], |J| = m, be uniformly distributed and
independent from S and W. If `(w,Z) ∈ SubG(σ2) with Z ∼
Λ ∀w ∈ W Let Q = PW |S , and let P be a σ (SJ) measurable
data-dependent prior on W . Then:

| gen(Q,Λ)| ≤
√

2
σ2

n−m
I
(
W ;Scj

)
≤
√

2
σ2

n−m
E[KL(Q//P )]. (44)

The complete proof is available in Appendix B of [8].
The primary tools used in the proof is the Donsker-Varadhan
lemma and a clever re-writing in terms of the cumulant
generating function.

This key insight and initial result is further expanded upon
with application to SGLD. Due to space limitations, in this

review we are unable to study the theory of [8] in full form.
Instead, we will focus on a simple example of (24). The
following analysis can be found in the appendix of [8].

We use m = n−1 and {i?} = J. It follows from the results
that:

KL (Qt+1(S)//Pt+1 (SJ)) =

(
µt+1 − µ′t+1

)2
4ηt/β

=
β

n2
z2
i ηt.

(45)
Thus, we can apply the following generalization bound:∣∣gen

(
Λ,PW |S

)∣∣ ≤ E
√

2σ2KL (QT (S)‖PT (SJ))

≤ E

√√√√2σ2
β

n2
z2
i∗

T−1∑
t=0

ηt = E [|zi|]


√√√√2σ2

β

n2

T−1∑
t=0

ηt


(46)

However, when one applies the methods of [7] we find a bound
of:

∣∣gen
(
Λ,PW |S

)∣∣ ≤
√√√√2σ2

n

T−1∑
t=0

I
(
W̄t+1;S|W t

1

)

≤

√√√√2σ2
β

n2
E [z2

i ]

T−1∑
t=0

ηt. (47)

Comparing these two, we can see we see that (47) is larger
since E [|zi|] ≤

√
E [z2

i ] by Jensen’s inequality. It is not
immediately clear how these bounds compare to Theorem 5,
and this is left for future study.

VII. CONCLUSION

In this review we considered some recent developments
in information-theoretic generalization bounds for SGLD. We
motivated this study by establishing why such bounds are
considered the “holy-grail” of statistical learning [1]. After
this we establish the initial information-theoretic frameworks
proposed in [4], [5], as well as the improvements considered
by [6]. These initial works provided a powerful new tool for
analyzing the generalization of stochastic statistical learning
algorithms. They are based on the intuitive notion that the
more an algorithm’s output depends on the input, the less
likely the output is to generalize. This is formalized by consid-
ering the information-theoretic notion of mutual information
between the output and input. Next we reviewed [7], which
focuses on the generalization of iterative algorithms. SGLD
falls into their framework, and their analysis allows us to
make guarantees about the performance of SGLD with certain
choices of parameters. Their work primarily lies on upper
bounding the mutual information of the final output of an
iterative algorithm and the input data by considering the entire
trajectory of the of the output at each iteration. Furthermore,
they make a Lipshitz assumption in order to eliminate data
distribution dependence. Though this technique presents some
interesting ideas, the shortcomings are also apparent.

In [8], the authors note the impracticality of these bounds
for modern problems. In particular, they espouse the idea



that data-dependant bounds are needed to develop ways of
bounding generalization error in modern problems. To do this,
they consider a framework where the initial data is split into
two parts. Part of the data is used for generating a prior,
while the pother is not, thus enabling the development of
generalization bounds which depend on the underlying data
distribution. Finally, we develop a bound for a particular case
of SGLD with a square-error loss function. This bound does
not follow the procedure of [7], but instead uses the linearity
of the update function. Future work remains to validate the
new proposed bounds and form a proper comparison.
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